期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
基于mRMR-SOM的异步电机轴承故障诊断研究
1
作者 刘文 周智勇 蔡巍 《机电工程》 北大核心 2024年第1期90-98,共9页
针对异步电机轴承故障诊断问题,提出了一种融合最大相关最小冗余特征选择算法(mRMR)和自组织映射神经网络(SOM)的故障诊断方法,并将其应用于轴承故障诊断的不同阶段。首先,在实验室环境下搭建了异步电机故障诊断试验平台,在不同电机状... 针对异步电机轴承故障诊断问题,提出了一种融合最大相关最小冗余特征选择算法(mRMR)和自组织映射神经网络(SOM)的故障诊断方法,并将其应用于轴承故障诊断的不同阶段。首先,在实验室环境下搭建了异步电机故障诊断试验平台,在不同电机状态下分别采集振动、电流和电压信号,利用统计学方法获取了高维混合特征集;然后,以互信息为背景,利用mRMR根据特征与状态标签间的相关性和特征间的冗余性,筛选了具备强区分能力的特征,以避免计算冗余和后验诊断性能下降;最后,采用SOM对异步电机健康和轴承故障状态进行了分类识别,验证了SOM对异步电机轴承故障诊断的有效性,以及mRMR对故障诊断结果的影响。研究结果表明:基于mRMR-SOM的异步电机轴承故障诊断方法能够准确地区分健康和故障状态,测试集分类准确率达到89%;使用mRMR特征筛选能够将154维特征降低至17维,缩短23.5%的网络收敛时间,并将分类准确率由89%提升至98%;试验结果验证了基于mRMR-SOM的异步电机轴承故障诊断方法对于异步电机轴承故障诊断问题的有效性,且证实其具备良好的诊断效果。 展开更多
关键词 自组织映射神经网络 最大相关最小冗余特征选择算法 互信息 特征降维 特征选择 神经网络算法 U矩阵
在线阅读 下载PDF
自组织映射神经网络(SOM)降尺度方法对江淮流域逐日降水量的模拟评估 被引量:13
2
作者 周璞 江志红 《气候与环境研究》 CSCD 北大核心 2016年第5期512-524,共13页
利用1961-2002年ERA-40逐日再分析资料和江淮流域56个台站逐日观测降水量资料,引入基于自组织映射神经网络(Self-Organizing Maps,简称SOM)的统计降尺度方法,对江淮流域夏季(6-8月)逐日降水量进行统计建模与验证,以考察SOM对中国东... 利用1961-2002年ERA-40逐日再分析资料和江淮流域56个台站逐日观测降水量资料,引入基于自组织映射神经网络(Self-Organizing Maps,简称SOM)的统计降尺度方法,对江淮流域夏季(6-8月)逐日降水量进行统计建模与验证,以考察SOM对中国东部季风降水和极端降水的统计降尺度模拟能力。结果表明,SOM通过建立主要天气型与局地降水的条件转换关系,能够再现与观测一致的日降水量概率分布特征,所有台站基于概率分布函数的Brier评分(Brier Score)均近似为0,显著性评分(Significance Score)全部在0.8以上;模拟的多年平均降水日数、中雨日数、夏季总降水量、日降水强度、极端降水阈值和极端降水贡献率区域平均的偏差都低于11%;并且能够在一定程度上模拟出江淮流域夏季降水的时间变率。进一步将SOM降尺度模型应用到BCCCSM1.1(m)模式当前气候情景下,评估其对耦合模式模拟结果的改善能力。发现降尺度显著改善了模式对极端降水模拟偏弱的缺陷,对不同降水指数的模拟较BCC-CSM1.1(m)模式显著提高,降尺度后所有台站6个降水指数的相对误差百分率基本在20%以内,偏差比降尺度前减小了40%-60%;降尺度后6个降水指数气候场的空间相关系数提高到0.9,相对标准差均接近1.0,并且均方根误差在0.5以下。表明SOM降尺度方法显著提高日降水概率分布,特别是概率分布曲线尾部特征的模拟能力,极大改善了模式对极端降水场的模拟能力,为提高未来预估能力提供了基础。 展开更多
关键词 统计降尺度 som(self-organizing maps) 江淮流域 极端降水
在线阅读 下载PDF
SOM神经网络和C-均值法在负荷分类中的应用 被引量:15
3
作者 王文生 王进 王科文 《电力系统及其自动化学报》 CSCD 北大核心 2011年第4期36-39,共4页
负荷时变性和分散性已经成为制约负荷模型推广应用的主要因素,而负荷特性分类则是解决这个问题的有效途径。文中提出基于SOM神经网络的C-均值聚类算法的新的负荷分类方法:以负荷模型参数作为负荷动态特性分类特征向量,应用SOM神经网络... 负荷时变性和分散性已经成为制约负荷模型推广应用的主要因素,而负荷特性分类则是解决这个问题的有效途径。文中提出基于SOM神经网络的C-均值聚类算法的新的负荷分类方法:以负荷模型参数作为负荷动态特性分类特征向量,应用SOM神经网络对初始训练样本进行分类,将获得的聚类数目和各类中心点作为C-均值算法的初始输入进一步聚类。最后通过动模实验的分类结果表明该方法可自动获取分类数,应用于负荷特性分类研究中具有较强的实用性和有效性。 展开更多
关键词 电力系统 负荷建模 负荷特性分类 自组织特征映射 som神经网络 C-均值法
在线阅读 下载PDF
基于改进的SOM神经网络在水质评价分析中的应用 被引量:20
4
作者 雷璐宁 石为人 范敏 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第11期2379-2383,共5页
随着人们对水资源环境的日益重视,各种水质评价方法层出不穷。传统的水质评价方法多采用精确的数学模型进行描述,无法很好的反映水环境中存在的复杂非线性关系,从而影响整体评价结果。因此,本文提出采用一种改进的自组织特征映射神经网... 随着人们对水资源环境的日益重视,各种水质评价方法层出不穷。传统的水质评价方法多采用精确的数学模型进行描述,无法很好的反映水环境中存在的复杂非线性关系,从而影响整体评价结果。因此,本文提出采用一种改进的自组织特征映射神经网络(SOM)方法来进行水质评价,利用SOM神经网络能在无监督、无先验知识的状态下对样本进行自组织、自学习,实现对样本的评价与分类这一特点。通过引入主成分分析,解决SOM神经网络处理高维和相关性强的指标时出现的问题,提高网络收敛速度和聚类准确性。仿真结果表明:改进后的SOM神经网络能够直观准确地评价水体质量,反映水质整体状况。 展开更多
关键词 水质评价 自组织特征映射 som神经网络 主成分分析
在线阅读 下载PDF
有监督SOM神经网络在入侵检测中的应用 被引量:15
5
作者 赵建华 李伟华 《计算机工程》 CAS CSCD 2012年第12期110-111,114,共3页
为提高自组织特征映射(SOM)神经网络的分类性能,提出一种有监督SOM神经网络(SSOM)。在输入层和竞争层的基础上增加输出层,根据输入样本的不同预测类别,选取不同的公式调整权值,并训练网络。通过2个权值的组合,实现对样本类别的回归和统... 为提高自组织特征映射(SOM)神经网络的分类性能,提出一种有监督SOM神经网络(SSOM)。在输入层和竞争层的基础上增加输出层,根据输入样本的不同预测类别,选取不同的公式调整权值,并训练网络。通过2个权值的组合,实现对样本类别的回归和统计。基于KDD CUP99入侵检测数据集的实验结果表明,与其他SOM网络相比,SSOM具有更好的分类性能和更高的入侵检测率。 展开更多
关键词 自组织特征映射 神经网络 有监督自组织特征映射 机器学习 回归 入侵检测
在线阅读 下载PDF
一种基于SOM和K-means的文档聚类算法 被引量:16
6
作者 杨占华 杨燕 《计算机应用研究》 CSCD 北大核心 2006年第5期73-74,79,共3页
提出了一种把自组织特征映射SOM和K-means算法结合的聚类组合算法。先用SOM对文档聚类,然后以SOM的输出权值初始化K-means的聚类中心,再用K-means算法对文档聚类。实验结果表明,该聚类组合算法能改进文档聚类的性能。
关键词 自组织特征映射 K-MEANS 聚类 组合方法 文档聚类
在线阅读 下载PDF
基于SOM和HMM结合的刀具磨损状态监测研究 被引量:6
7
作者 吕俊杰 王杰 +1 位作者 王玫 吴越 《中国机械工程》 EI CAS CSCD 北大核心 2010年第13期1531-1535,共5页
针对端面铣刀磨损状态的识别问题,提出了基于自组织特征映射神经网络和隐马尔可夫模型结合的方法。该方法对铣削力信号进行预处理和相关特征提取,用自组织特征映射对信号特征矢量进行量化编码,所得码本作为隐马尔可夫模型的输入向量,分... 针对端面铣刀磨损状态的识别问题,提出了基于自组织特征映射神经网络和隐马尔可夫模型结合的方法。该方法对铣削力信号进行预处理和相关特征提取,用自组织特征映射对信号特征矢量进行量化编码,所得码本作为隐马尔可夫模型的输入向量,分别训练三个不同磨损阶段的隐马尔可夫模型来对未知的刀具磨损状态进行监测与识别。实验结果表明,该方法能够对刀具磨损状态进行准确的识别,对自动化生产具有现实意义。 展开更多
关键词 隐马尔可夫模型(HMM) 自组织特征映射(som) 刀具磨损状态 铣削力
在线阅读 下载PDF
基于改进的SOM聚类连续属性离散化算法 被引量:7
8
作者 陶刚 闫永刚 +1 位作者 刘俊 邹娇 《计算机应用》 CSCD 北大核心 2015年第A01期89-92,共4页
为解决连续属性值的离散化问题,提出了一种改进的自组织映射(SOM)聚类离散化算法,该算法利用SOM实现初始聚类,界定聚类上限;之后以初始聚类中心为样本,通过层次方法的平衡迭代规约和聚类(BIRCH)层次聚类算法进行二次聚类,解决聚类数虚... 为解决连续属性值的离散化问题,提出了一种改进的自组织映射(SOM)聚类离散化算法,该算法利用SOM实现初始聚类,界定聚类上限;之后以初始聚类中心为样本,通过层次方法的平衡迭代规约和聚类(BIRCH)层次聚类算法进行二次聚类,解决聚类数虚高问题并确定离散断点集;最后对断点集任一样本找出其所在维各聚类中心的最近邻,以此作为离散微调依据。实验结果表明,该算法在断点集数(轮廓系数提升75%)及离散精度方面(不相容度更近似0)均优于传统SOM聚类离散化算法,可有效解决大样本、高维数据离散化问题。 展开更多
关键词 自组织特征映射 BIRCH 离散化 轮廓系数 最近邻
在线阅读 下载PDF
基于小波和SOM网络的医学图像融合 被引量:3
9
作者 王安娜 杨铭如 +1 位作者 刘坐乾 王婷君 《计算机工程》 CAS CSCD 北大核心 2009年第21期200-202,205,共4页
提出一种基于小波变换和自组织特征映射(SOM)神经网络的医学图像融合方法,对图像进行小波变换,以图像的小波系数为特征,采用SOM网络对图像进行聚类,并进行模糊分类,从而确定像素融合的权重,得到融合图像。仿真实验结果表明,该方法能够... 提出一种基于小波变换和自组织特征映射(SOM)神经网络的医学图像融合方法,对图像进行小波变换,以图像的小波系数为特征,采用SOM网络对图像进行聚类,并进行模糊分类,从而确定像素融合的权重,得到融合图像。仿真实验结果表明,该方法能够获得良好的性能。 展开更多
关键词 图像融合 小波变换 自组织特征映射神经网络 聚类分析
在线阅读 下载PDF
竞争层结构可调SOM网络在中药模式识别中的应用 被引量:1
10
作者 王佩佩 宋晓峰 杨平 《数据采集与处理》 CSCD 北大核心 2007年第4期479-485,共7页
针对经典SOM算法无法准确反映原始数据的特征信息,提出了竞争层结构可调的SOM算法——CSA-SOM算法。该算法增加了竞争层神经元动态调节的步骤,调节的依据是不断比较原数据的位置信息和映射后低维空间的位置信息,使两者最终能趋于一致。... 针对经典SOM算法无法准确反映原始数据的特征信息,提出了竞争层结构可调的SOM算法——CSA-SOM算法。该算法增加了竞争层神经元动态调节的步骤,调节的依据是不断比较原数据的位置信息和映射后低维空间的位置信息,使两者最终能趋于一致。因此降维后的数据能够较好地保持原数据的特征,包括距离信息、角度信息以及分布信息。该算法有效地实现了红景天药材的准确清晰分类。算法理论分析和实验结果均表明,CSA-SOM算法是一种快速、准确的数据内在规律映射可视化算法,与SOM算法相比,CSA-SOM算法的特征映射效果比较好,解决了SOM算法会使映射后数据结构发生扭曲的问题。 展开更多
关键词 som网络 CSA—som算法 特征提取 降维映射 中药
在线阅读 下载PDF
基于SOM神经网络的风电电子装置故障诊断 被引量:16
11
作者 高宇 《电力系统及其自动化学报》 CSCD 北大核心 2010年第3期142-145,共4页
监测可能发生故障的电力电子器件,对电力电子装置的故障进行识别和诊断,以降低电气系统的故障发生率,对于减少风力发电机组运行的故障率,降低风力发电运行维护成本有着重要意义。为此,提出将自组织特征映射神经网络(SOM)应用于风力发电... 监测可能发生故障的电力电子器件,对电力电子装置的故障进行识别和诊断,以降低电气系统的故障发生率,对于减少风力发电机组运行的故障率,降低风力发电运行维护成本有着重要意义。为此,提出将自组织特征映射神经网络(SOM)应用于风力发电机组电力电子装置的故障诊断中。实验结果表明,利用该方法进行风力发电机电力电子装置故障诊断能取得较好的效果,具有一定的工程应用价值。 展开更多
关键词 风力发电机组 电力电子装置 som神经网络
在线阅读 下载PDF
高等学校教育资源集聚分类的SOM模型及应用
12
作者 万雅奇 《计算机工程与应用》 CSCD 北大核心 2007年第22期228-230,234,共4页
从集聚分类的角度,实证研究高等学校教育资源状况聚类模型,提出教育资源状况的聚类模型并结合实际进行分类。
关键词 高等学校 教育资源 聚类分类 自组织特征映射网络(som)
在线阅读 下载PDF
基于SOM和PSO的非监督地震相分析技术 被引量:30
13
作者 张 郑晓东 +3 位作者 李劲松 路交通 曹成寅 隋京坤 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2015年第9期3412-3423,共12页
地震相分析技术是储层预测的一种重要方法,可以用来描述有利沉积相带的分布规律.传统的地震相聚类分析方法对大数据的处理运算速度较慢,且容易陷入局部极小值,造成聚类分析的结构不准确.本文提出基于自组织神经网络(SOM)和粒子群优化方... 地震相分析技术是储层预测的一种重要方法,可以用来描述有利沉积相带的分布规律.传统的地震相聚类分析方法对大数据的处理运算速度较慢,且容易陷入局部极小值,造成聚类分析的结构不准确.本文提出基于自组织神经网络(SOM)和粒子群优化方法(PSO)相结合的地震相分析技术,利用自组织神经网络能够保持原始地震数据的拓扑结构特性的特点,将大量冗余样本压缩为小样本数据,再通过粒子群的全局寻优能力改善K均值聚类的效果.理论模型和实际应用表明该方法能既有效实现数据压缩,又能提供较为准确的全局解,在地震相预测中兼顾计算效率和计算精度. 展开更多
关键词 自组织神经网络 粒子群算法 非监督地震相分析 聚类
在线阅读 下载PDF
基于PCA和SOM模型的龙感湖水质时空动态研究 被引量:7
14
作者 肖灵君 王普泽 +4 位作者 熊满堂 叶少文 张堂林 刘家寿 李钟杰 《水生生物学报》 CAS CSCD 北大核心 2021年第5期1104-1111,共8页
为评估湖泊渔业模式转型阶段水环境的时空动态,选择长江中下游典型湖泊龙感湖为研究地点,于2017—2018年对该湖的黄梅水域和宿松水域进行周年季度水质监测,通过主成分分析(PCA)和自组织特征映射人工神经网络(SOM)模型定量分析了水体理... 为评估湖泊渔业模式转型阶段水环境的时空动态,选择长江中下游典型湖泊龙感湖为研究地点,于2017—2018年对该湖的黄梅水域和宿松水域进行周年季度水质监测,通过主成分分析(PCA)和自组织特征映射人工神经网络(SOM)模型定量分析了水体理化参数的时空变化特征,采用综合营养状态指数法(TLI)对水体富营养化状况进行了评价。PCA分析结果表明,龙感湖宿松水域和黄梅水域的水质差异较小,季节动态明显。全湖氨氮夏季平均浓度高达0.64 mg/L;总氮夏季平均浓度为2.30 mg/L,冬季平均浓度为1.04 mg/L;叶绿素a夏季平均含量达95.28μg/L,秋季平均浓度为28.30μg/L;pH夏季最高,达9.27;总磷冬季最高,平均为0.22 mg/L;TLI指数表明龙感湖除秋季属于轻度富营养水体外,其他3个季节均属于中度富营养状态。SOM模型结果具有可视化强的优点,能够更清晰和直观地反映龙感湖水质的时空分布动态。围栏拆除和禁渔等管理措施有助于湖泊渔业环境修复和资源恢复,建议对渔业模式转型后的湖泊生态系统变化进行长期跟踪监测评估。 展开更多
关键词 湖泊渔业模式转型 水质时空变化 主成分分析(PCA) 自组织特征映射人工神经网络(som) 湖泊生态系统
在线阅读 下载PDF
一种面向订单剩余完工时间预测的SOM-FWFCM特征选择算法 被引量:5
15
作者 刘道元 郭宇 +3 位作者 黄少华 方伟光 杨能俊 崔世婷 《中国机械工程》 EI CAS CSCD 北大核心 2021年第9期1073-1079,共7页
准确的订单剩余完工时间预测有助于动态调整生产计划、优化制造过程,以满足订单产品按时交付的需求。订单剩余完工时间受到车间物料、设备、在制品等各类生产要素的综合影响,相关数据具有典型的大量、多维、高冗余的特点,有效的特征选... 准确的订单剩余完工时间预测有助于动态调整生产计划、优化制造过程,以满足订单产品按时交付的需求。订单剩余完工时间受到车间物料、设备、在制品等各类生产要素的综合影响,相关数据具有典型的大量、多维、高冗余的特点,有效的特征选择能够获得更高的预测精度。在构建候选特征集的基础上,提出了一种基于自组织映射(SOM)网络特征加权模糊C均值(FWFCM)的特征选择算法。通过构建SOM网络初始化FWFCM的聚类中心,减少后者对初始聚类中心的依赖;基于互信息计算特征权重,实现导向性特征聚类,根据聚类结果选择特征代表,构成高质量关键特征子集。以某机加工车间的生产数据为例,通过与其他4种特征选择算法的对比分析,验证了所提算法的有效性。 展开更多
关键词 大数据 订单剩余完工时间 特征选择 自组织映射 特征加权模糊C均值
在线阅读 下载PDF
SOM神经网络在储层流体识别中的应用 被引量:2
16
作者 胡春涛 刘文碧 李德发 《成都理工大学学报(自然科学版)》 CAS CSCD 1996年第S1期29-34,共6页
自组织特征映射(SOM)神经网络能通过自组织有效地提取出各特征参数间的内在特征并映射到分类模板上,它可以用于各种模式识别问题。本文首次将SOM网络引入到储层流体识别中,经研究表明其精度高于传统方法,说明该方法在解决复... 自组织特征映射(SOM)神经网络能通过自组织有效地提取出各特征参数间的内在特征并映射到分类模板上,它可以用于各种模式识别问题。本文首次将SOM网络引入到储层流体识别中,经研究表明其精度高于传统方法,说明该方法在解决复杂分类问题上的有效性和先进性,它在储层流体识别中的应用是成功的,值得推广。 展开更多
关键词 自组织特征映射(som) 神经网络 储层流体识别 分类
在线阅读 下载PDF
EMD马氏距离与SOM神经网络在故障诊断中的应用研究 被引量:3
17
作者 姚海妮 王珍 +2 位作者 邱立鹏 陈建国 杨铎 《噪声与振动控制》 CSCD 2016年第1期138-141,162,共5页
为实现对微弱动态响应的准确辨识及故障状态的早期诊断,提出EMD马氏距离与SOM神经网络的故障诊断方法,该方法首先对原始振动信号进行粒子滤波,提高信噪比,然后对其进行EMD分解,并对分解后的各模式分量进行分析,获得相关特征值组成特征向... 为实现对微弱动态响应的准确辨识及故障状态的早期诊断,提出EMD马氏距离与SOM神经网络的故障诊断方法,该方法首先对原始振动信号进行粒子滤波,提高信噪比,然后对其进行EMD分解,并对分解后的各模式分量进行分析,获得相关特征值组成特征向量,并求原始信号特征向量,为了选取能代表信号特征的模式分量,求各模式分量与原信号特征向量的马氏距离,将最优模式分量输入训练好的SOM神经网络,对故障分类,以轴承诊断为应用实例结果表明该方法切实有效。 展开更多
关键词 振动与波 粒子滤波 EMD 马氏距离 som神经网络 故障诊断
在线阅读 下载PDF
一种自动抽取图像中可判别区域的新方法 被引量:6
18
作者 何清法 鲁松 +1 位作者 郝沁汾 李国杰 《计算机学报》 EI CSCD 北大核心 2002年第8期801-809,共9页
图像分割是图像处理中的一个难题 .为了自动抽取图像中的可判别区域 ,提出了一种基于自组织图归约算法的区域抽取新方法 .首先 ,利用包括颜色、纹理以及位置在内的多模特征抽取算法 ,原始图像被转换成特征图 ;接着 ,通过自组织映射学习... 图像分割是图像处理中的一个难题 .为了自动抽取图像中的可判别区域 ,提出了一种基于自组织图归约算法的区域抽取新方法 .首先 ,利用包括颜色、纹理以及位置在内的多模特征抽取算法 ,原始图像被转换成特征图 ;接着 ,通过自组织映射学习算法 ,特征图被映射成自组织图 ;然后 ,对自组织图实施归约算法得到一族约简的自组织图谱系 ;最后 ,利用一个综合的聚类有效性分析指标从约简的自组织图谱系中得到一个最优约简的自组织图 ,以此实现图像区域的分割 .新方法的有效性通过两个评价实验得到了验证 . 展开更多
关键词 自动抽取图像 可判别区域 特征图 自组织映射 自组织图归约 聚类有效性分析 图像分割 图像处理 计算机视觉
在线阅读 下载PDF
基于天气类型聚类识别的光伏系统短期无辐照度发电预测模型研究 被引量:168
19
作者 代倩 段善旭 +3 位作者 蔡涛 陈昌松 陈正洪 邱纯 《中国电机工程学报》 EI CSCD 北大核心 2011年第34期28-35,共8页
现有光伏发电量预测模型大多以太阳辐照度作为必要的输入,然而,由于当前国内太阳辐射站点仍较稀少且预报能力较低,因此此类预报方法难于实施。利用距离分析方法分析光伏发电量与气象因素间的相关性,确定以气温和湿度作为预报输入因子,... 现有光伏发电量预测模型大多以太阳辐照度作为必要的输入,然而,由于当前国内太阳辐射站点仍较稀少且预报能力较低,因此此类预报方法难于实施。利用距离分析方法分析光伏发电量与气象因素间的相关性,确定以气温和湿度作为预报输入因子,建立反传播(back propagation,BP)神经网络的无辐照度发电量短期预报模型。此外,为适应天气突变,采用自组织特征映射(self-organizing feature map,SOM)由云量预报信息对天气类型聚类识别,继而对各天气类型采用相应的预测网络,避免了单神经网络的过拟合问题。通过与含辐照度输入及无天气聚类识别的预测模型做交叉对比实验,预测结果表明,天气类型聚类识别能显著提高预测精度,无辐照度光伏发电量短期预测模型有较高的精度和50%湿度抗扰动性。 展开更多
关键词 光伏发电量短期预测 神经网络 气象因素 自组织特征映射聚类 距离分析
在线阅读 下载PDF
基于电弧传感的GMAW过程焊缝缺陷识别方法 被引量:8
20
作者 李迪 宋永伦 +1 位作者 叶峰 江伟 《焊接学报》 EI CAS CSCD 北大核心 2000年第1期30-33,共4页
CO2 气体保护焊广泛应用于自动焊及机器人焊接领域 ,其过程中焊接质量的自动监测是目前工业界亟待解决的问题。而基于电弧传感 (through the arcsensing)信息的监测研究 ,由于其特有的优势得到了越来越多的关注。本文提出一种在CO2 气... CO2 气体保护焊广泛应用于自动焊及机器人焊接领域 ,其过程中焊接质量的自动监测是目前工业界亟待解决的问题。而基于电弧传感 (through the arcsensing)信息的监测研究 ,由于其特有的优势得到了越来越多的关注。本文提出一种在CO2 气体保护焊过程中对焊缝缺陷的自动监测方法。该方法基于对电弧传感信号特征的提取 ,通过采用自组织特征映射 (SOM)神经网络对信号分类 ,在焊接过程中在线识别焊缝缺陷。试验表明 ,该方法有效地实现了焊缝缺陷的识别 ,可用于焊接过程的在线监测 ,对机器人焊接生产的产品“零缺陷”质量控制具有重要应用价值。 展开更多
关键词 焊接 电弧传感 焊缝缺陷识别 GMAW焊
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部