期刊文献+
共找到577篇文章
< 1 2 29 >
每页显示 20 50 100
Improved wavelet neural network combined with particle swarm optimization algorithm and its application 被引量:1
1
作者 李翔 杨尚东 +1 位作者 乞建勋 杨淑霞 《Journal of Central South University of Technology》 2006年第3期256-259,共4页
An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learnin... An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function. 展开更多
关键词 artificial neural network particle swarm optimization algorithm short-term load forecasting WAVELET curse of dimensionality
在线阅读 下载PDF
基于自适应等效能耗最小的燃料电池船舶能量管理策略 被引量:1
2
作者 许晓彦 曹伟 韩冰 《太阳能学报》 北大核心 2025年第3期108-115,共8页
为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储... 为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储能系统最终电量和初始电量误差最小为目标函数,求解燃料电池系统和储能系统的最优运行轨迹;在下层优化中,建立等效因子的优化模型,提取最优等效因子的分布。然后,建立以系统状态参数为输入、等效因子为输出的神经网络模型。利用最优的等效因子作为训练样本,对神经网络模型进行训练。最后,将神经网络模型与等效能耗最小策略相结合,可实现等效因子的实时调整。在Matlab/Simulink中搭建船舶混合能源系统的仿真模型,对基于自适应等效能耗最小的能量管理策略进行验证。仿真结果表明,与基于恒定等效因子的等效能耗最小策略相比,储能系统的最终电量更接近初始值,氢气的总消耗量降低1.98%。 展开更多
关键词 燃料电池船 能量管理策略 神经网络 等效因子 多种群自适应协同的粒子群优化算法
在线阅读 下载PDF
基于BP神经网络结合ERA5数据的风电功率预测 被引量:1
3
作者 王婷婷 李斯胜 +4 位作者 于伟 能锋田 李星南 杨佳琳 熊亮 《储能科学与技术》 北大核心 2025年第1期183-189,共7页
随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优... 随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优化(particle swarm algorithm,PSO)算法优化模型,结合平均绝对误差、均方根误差和Pearson相关系数分析风电功率预测效果。结果表明,模型训练集中预测与实测风电功率变化趋势基本一致,呈现同增同减的趋势,BP模型的平均绝对误差为702.12 W,均方根误差为1000.18 W,相关系数为0.91,PSO-BP模型的平均绝对误差为700.75 W,均方根误差为995.16 W,相关系数为0.94;测试集中ERA5数据在一定程度上高估了风电功率,但整体趋势基本一致,BP模型的平均绝对误差为861.09 W,均方根误差为1150.86 W,相关系数为0.81;PSO-BP模型的平均绝对误差为829.55 W,均方根误差为1117.39 W,相关系数为0.83,模型的预测效果相对较好,PSO-BP模型相较于BP模型的预测效果均有一定程度的提高,在该区域的风电功率预测方面有较好的适用性。研究结果可为缺乏观测数据或观测数据质量不高的地区预测风电功率提供参考。 展开更多
关键词 风力发电 BP神经网络 ERA5再分析资料 粒子群优化算法 风电功率预测
在线阅读 下载PDF
基于层级分解的前围声学包多目标优化 被引量:1
4
作者 杨帅 吴宪 薛顺达 《振动与冲击》 北大核心 2025年第3期267-277,共11页
搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变... 搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变量范围,以PBNR(power based noise reduction)均值作为约束,以质量和成本作为优化目标,采用非支配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-II)进行多目标优化,得到Pareto多目标解集。并从中选取满足设计目标的最佳组合方案(材料组合、覆盖率、前围过孔密封方案选型)。结果显示,该模型最终的优化结果与实测结果接近,误差分别为0.35%,1.47%,1.82%,相较于初始声学包方案,优化后的结果显示,PBNR均值提升3.05%,其质量降低52.38%,成本降低15.15%,验证了所提方法的有效性和准确性。 展开更多
关键词 GAPSO-RBFNN 声学包 PBNR NSGA-II Pareto多目标解集
在线阅读 下载PDF
基于BWM+BP神经网络的在役中小跨径桥梁安全风险智能评估模型研究
5
作者 赵锐 田志强 宋宇涵 《世界桥梁》 北大核心 2025年第5期97-104,共8页
为克服传统桥梁安全风险评估过程的主观性及由于桥梁系统复杂带来的不确定性,基于桥梁检测数据,提出基于最优最劣法(BWM)+BP神经网络的在役中小跨径桥梁安全风险智能评估模型。首先,在现行桥梁检测评价规范基础上,以各结构部件的病害作... 为克服传统桥梁安全风险评估过程的主观性及由于桥梁系统复杂带来的不确定性,基于桥梁检测数据,提出基于最优最劣法(BWM)+BP神经网络的在役中小跨径桥梁安全风险智能评估模型。首先,在现行桥梁检测评价规范基础上,以各结构部件的病害作为安全风险评估体系中的底层指标,构建安全风险评估指标体系;然后,采用BWM法和德尔菲法,利用专家经验确定病害层指标权重,结合模糊综合评判法对桥梁检测样本数据进行前处理;最后,利用BP神经网络对处理后的样本进行训练,根据训练结果,分别用遗传算法(GA)和粒子群算法(PSO)对BP神经网络优化后对比,构建最优评估模型。将该评估模型应用于墩那高速新疆伊犁州某段某中桥,对其进行安全风险评估,以验证其适用性。结果表明:运用BWM+BP神经网络的在役中小跨径桥梁安全风险智能评估模型在一定程度上克服了检测报告样本中评价不准确和局限问题,同时削弱了BP神经网络训练大量样本的需求;GA优化的BP神经网络模型比PSO优化精度更佳、鲁棒性更好,准确率达96.49%;相比现行规范,运用该模型进行在役中小跨径桥梁安全风险评估,能改善病害叠加评分过低的问题,评估结果更符合实际情况。 展开更多
关键词 中小跨径桥梁 最优最劣法 BP神经网络 遗传算法 粒子群算法 智能评估模型 安全风险评估
在线阅读 下载PDF
基于负载预测与能耗优化的刮板输送机速度控制方法
6
作者 汪卫兵 骆佳录 +3 位作者 李赖 赵栓峰 路正雄 李开放 《煤炭科学技术》 北大核心 2025年第10期259-268,共10页
针对综采工作面中刮板输送机因持续高速运转而导致的能源浪费和运输效率低下问题,结合双向割煤工艺,对刮板输送机的运行阶段进行了系统分析,建立了刮板输送机能耗模型,在此基础上提出了一种基于负载转矩预测与能耗优化相结合的速度控制... 针对综采工作面中刮板输送机因持续高速运转而导致的能源浪费和运输效率低下问题,结合双向割煤工艺,对刮板输送机的运行阶段进行了系统分析,建立了刮板输送机能耗模型,在此基础上提出了一种基于负载转矩预测与能耗优化相结合的速度控制方法。首先,建立煤量模型,描述煤量随运行工况变化的动态特性。随后,结合刮板输送机的运行阻力特性,明确煤量、驱动力与运行阻力之间的关系,构建刮板输送机的能耗模型。为应对综采工作面复杂多变的运行工况,引入粗糙径向基神经网络(Rough Radial Basis Function Neural Network, RRBFNN),对刮板输送机负载转矩进行精确预测,生成优化模型所需的关键输入变量。在此基础上,采用改进的粒子群优化算法(PSO),以能耗最小化为目标,对刮板输送机的运行速度进行优化,改进算法在引入动态惯性因子的同时,平衡了全局搜索与局部搜索能力,从而提高了优化的精度与收敛效率。最后,结合榆家梁43101综采工作面的实际数据对本文方法进行了验证。结果表明:该速度控制方法能够在一个生产循环中有效降低刮板输送机的能耗10.42%。 展开更多
关键词 刮板输送机 智能调速 能耗模型 粗糙径向基神经网络 改进粒子群算法
在线阅读 下载PDF
基于改进灰狼算法优化BP神经网络的RSS指纹定位
7
作者 刘伟 李艾龙 +1 位作者 李卓 王智豪 《电子测量技术》 北大核心 2025年第14期162-175,共14页
室内定位技术,特别是基于接收信号强度(RSSI)的指纹定位方法,因其成本低廉、设备支持广泛、易于部署、计算开销小等特点,受到了广泛关注。为了增强RSSI与实际物理距离之间的映射关系并提高测距精度,本文提出了一种基于改进灰狼优化(IGWO... 室内定位技术,特别是基于接收信号强度(RSSI)的指纹定位方法,因其成本低廉、设备支持广泛、易于部署、计算开销小等特点,受到了广泛关注。为了增强RSSI与实际物理距离之间的映射关系并提高测距精度,本文提出了一种基于改进灰狼优化(IGWO)算法与反向传播神经网络(BPNN)结合的RSSI测距算法。与遗传算法(GA)、粒子群算法(PSO)和经典灰狼优化算法(GWO)相比,改进的GWO算法在定位精度和全局搜索能力方面具有显著优势。通过实验,本文提出的IGWO算法在均方根误差RMSE上相比GWO算法、GA算法、PSO算法分别减少了21.3%、15.7%、14.6%,IGWO算法表现出了较好的定位性能,在精度和性能上均优于传统方法。 展开更多
关键词 室内定位 RSSI测距 BP神经网络 灰狼算法 粒子群算法
在线阅读 下载PDF
结合注意力机制和IPSO的石油化工过程变量预测方法
8
作者 杨琛 周宁 孔立新 《安全与环境学报》 北大核心 2025年第6期2179-2188,共10页
在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional... 在石油化工生产过程中,针对关键变量的在线监测与预警对预防事故发生至关重要。为准确预测石油化工过程中的关键变量,提出了一种基于改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法优化双向长短期记忆(Bi-directional Long Short-Term Memory, BiLSTM)神经网络的预测模型,并特别引入注意力机制,以强化关键信息的表达。以北京市某化工企业初馏塔为研究对象,首先利用皮尔逊相关系数、最大信息系数筛选高相关性变量;同时,利用极端梯度提升(eXtreme Gradient Boosting, XGBoost)树构造关键衍生特征,增强输入变量的有效性。其次,采用BiLSTM建模,捕捉关键变量前后时序依赖性;同时结合IPSO优化隐藏层节点数、学习率、L2正则化系数和学习率调整因子,以获得最优超参数组合,实现对初馏塔换热终温的精确预测。试验结果表明,所提出的模型具有较强泛化能力,在预测准确率和稳定性方面均优于传统模型,不仅能有效避免陷入局部最优解,还能精准捕捉关键变量的变化趋势,可为实现石油化工过程关键变量的预测提供参考。 展开更多
关键词 安全工程 双向长短期记忆神经网络 注意力机制 极端梯度提升树 改进粒子群优化算法
在线阅读 下载PDF
永磁同步电机全速域无传感器复合控制策略研究
9
作者 李贵远 张静 +3 位作者 郭中阳 刘杰 刘勇 崔安迪 《重庆理工大学学报(自然科学)》 北大核心 2025年第4期200-208,共9页
为解决单一的永磁同步电机无传感器控制策略在特定转速区间控制效果不佳的问题,提出一种新的复合策略,以实现全速域高性能控制。在矢量控制电流控制器环节,使用神经网络PID控制器,当突加负载时,0.02 s即可恢复到原转速,提高系统的鲁棒性... 为解决单一的永磁同步电机无传感器控制策略在特定转速区间控制效果不佳的问题,提出一种新的复合策略,以实现全速域高性能控制。在矢量控制电流控制器环节,使用神经网络PID控制器,当突加负载时,0.02 s即可恢复到原转速,提高系统的鲁棒性;在零、低速段,采用改进方波高频信号注入法,避免使用滤波器,无需调节滤波系数,在转速上减少0.03 s的延时,进一步提高了控制精度;在中高速段,采用超螺旋滑模观测器,通过采用积分形式消除高频噪声,减小误差以及相位延迟,但使用固定的滑模参数会使估算精度容易受到参数干扰产生误差,降低控制精度比较低,对此提出了改进的粒子群优化算法(improved particle swarm optimization,IPSO)超螺旋滑模观测器,转速误差仅有0.1 r/min;最后,通过采用改进加权切换函数,仅有0.5 s的抖动时间,高效实现2种控制策略的切换。经过仿真验证,该复合控制策略使永磁同步电机在各速度区间均具有较高的估算精度和优良的动态响应性能。 展开更多
关键词 永磁同步电机 神经网络PID 方波高频信号注入法 粒子群优化算法 超螺旋滑模观测器 加权切换函数
在线阅读 下载PDF
基于嵌套优化的GA-PSO-BP神经网络短期风功率预测方法研究 被引量:3
10
作者 刘翘楚 王杰 +3 位作者 秦文萍 张文博 陈玉梅 刘佳昕 《电网与清洁能源》 北大核心 2025年第2期138-146,共9页
短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提... 短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提出嵌套优化的GA-PSO-BP神经网络短期风电功率预测模型。建立内外双层嵌套的优化机制,内层机制中引入GA算法优化PSO算法学习因子,优化后PSO算法作为外层机制实现BP神经网络阈值和权值的优化。模拟风电数据预测结果表明,比起GA-BP、PSO-BP、长短期记忆网络(long short-term memory,LSTM)预测模型,所提嵌套优化模型在平均绝对误差(mean absolute error,MAE)、均方根误差(root mean squared error,RMSE)、决定系数R2 3个评价维度上均取得了最优值;利用山西某风电场不同月份、不同时段、不同波动特征的实际运行数据进行验证,预测结果表明MAE均小于0.02,R2均大于0.99,所提嵌套优化模型具有较高的预测精度和拟合程度。 展开更多
关键词 风电功率预测 BP神经网络 遗传算法 粒子群算法 嵌套优化
在线阅读 下载PDF
基于多层感知机模型的稻麦双变量精准施肥机排肥策略 被引量:3
11
作者 施印炎 辛亚鹏 +3 位作者 汪小旵 郑恩来 沈成 张昭 《农业工程学报》 北大核心 2025年第10期51-60,共10页
变量施肥是实施精准农业的重要技术途径,转速、开度双重调节的外槽轮式变量施肥方式是稻麦轮作区作物施肥的典型方式。针对目前变量施肥机控制系统响应速度慢、预测模型不准确,引起排肥量误差大、成效不显著的问题,该研究基于自主研制... 变量施肥是实施精准农业的重要技术途径,转速、开度双重调节的外槽轮式变量施肥方式是稻麦轮作区作物施肥的典型方式。针对目前变量施肥机控制系统响应速度慢、预测模型不准确,引起排肥量误差大、成效不显著的问题,该研究基于自主研制的稻麦双变量精准施肥机,运用数理统计和机器学习方法,提出一种基于多层感知人工神经网络的排肥量预测模型,并对其有效性和适用性进行验证。通过分析莱维飞行算法(levy flight algorithm,LFA)、粒子群算法(particle swarm optimization,PSO)和多层感知器神经网络模型(multilayer perceptron,MLP)的算法机理,结合开度-转速双变量排肥方法,构建LFA-PSO-MLP(LPM)排肥量预测模型;引入开度-转速-排肥量关系模型,利用归一化、正则化等方式改善算法结构,开展参数优化和模型训练,并对比MLP和PSO-MLP模型,得到LFA-PSO-MLP排肥量最优预测模型;构建ILPM(inverse LFA-PSO-MLP)预测模型作为施肥机的神经网络模型,根据目标排肥量快速计算所需开度和转速。试验结果表明:LFA-PSO-MLP模型在拟合50次左右收敛,拟合500次后的R2值为0.999,平均相对误差(average relative error,ARE)为1.83%,均优于其他两种模型。LPM验证集验证试验中,预测值与验证值的平均相对误差为2.47%,田间试验的预测值与实测值的平均相对误差为3.49%;ILPM验证试验中,转速预测的平均相对误差为1.82%,目标排肥量与实际排肥量的最大相对误差为7.26%,平均相对误差为6.09%,施肥机排肥效果较好。所提模型能够在保证排肥量预测精度的同时提升运算效率,实现快速、精准、高效的变量施肥,改善生态效益和经济效益。 展开更多
关键词 算法 粒子群 莱维飞行 多层感知机神经网络 双变量排肥策略
在线阅读 下载PDF
改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究 被引量:3
12
作者 张国浩 王彩玲 +1 位作者 王洪伟 于涛 《光谱学与光谱分析》 北大核心 2025年第2期394-402,共9页
使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总... 使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总磷浓度含量的预测。具体而言,首先对测得的长江水质光谱数据进行最大最小归一化和均值中心化两种预处理操作,在消除不同数据量级差异的同时去除了噪声,确保了数据的一致性和可靠性。其次,为了解决光谱数据的高维度问题,采用了核主成分分析(KPCA)方法来降低数据维度并提取特征。KPCA方法通过在高维度的空间中找到一个分类平面,选出能代表原始数据99.42%信息量的前6个主成分,用于后续预测模型的训练。接着在原始粒子群算法的基础上引入了粒子初始化规则、多种群竞争策略、参数自适应更新策略、种群多样性引导策略和粒子变异机制,提高了粒子群的寻优能力,降低粒子陷入局部最优解的概率。并使用改进后的粒子群算法对BP神经网络(BPNN)中的初始化权重和参数大小进行寻优,从而加快网络的收敛效果,提高预测能力。最后,使用本研究所提出的预测模型对测试集中的样本进行总磷浓度的预测,实验结果得到R^(2)为0.975786,RMSE为0.002242,MAE为0.001612。将本模型与当前预测性能较好的其他基准模型进行预测效果的对比,本研究所提出的模型对长江水体总磷浓度预测拟合效果更好,精确度更高。在水资源保护和环境管理领域中使用光谱数据结合融合算法进行预测模型的研究和实践提供了新的思路和观点。 展开更多
关键词 光谱数据 改进粒子群优化算法 BP神经网络模型 核主成分分析(KPCA) 总磷浓度
在线阅读 下载PDF
神经网络加速PSO算法的超材料吸波体设计 被引量:1
13
作者 戴书浩 孙俊 +2 位作者 彭艺 罗会龙 张莉 《传感器与微系统》 北大核心 2025年第2期90-94,共5页
在超材料吸波体的设计过程中,研究人员常采用耗时长的全波仿真方法,设计思路主要以耗时长的参数扫描和经验设计为主。为了减少设计耗时,本文提出了一种基于神经网络加速粒子群优化(PSO)算法的快速设计方法。该方法利用神经网络对超材料... 在超材料吸波体的设计过程中,研究人员常采用耗时长的全波仿真方法,设计思路主要以耗时长的参数扫描和经验设计为主。为了减少设计耗时,本文提出了一种基于神经网络加速粒子群优化(PSO)算法的快速设计方法。该方法利用神经网络对超材料吸波体的电磁参数进行准确地预测,其预测结果与仿真结果均方误差(MSE)不超过0.0011。在PSO算法对结构参数空间进行搜索的过程中,预测结果被用于算法优化过程中的适应度计算,PSO算法能够根据不同的适应度值自动调节结构参数以到达电磁波宽频带吸收的目的。该方法将设计耗时缩短为全波仿真设计耗时的0.3%。通过该方法设计的超材料吸波体在8.5~17.9 GHz频段内的吸波率大于90%,吸波带宽为9.4 GHz。此外该方法优化过程避免了人工干扰,能够移植到超材料的其他应用设计中。 展开更多
关键词 超材料吸波体 神经网络 粒子群优化算法
在线阅读 下载PDF
基于RBF-PSO算法的浮筏隔振系统性能优化及轻量化设计 被引量:1
14
作者 徐明成 肖邵予 +1 位作者 王汝夯 张冠军 《中国舰船研究》 北大核心 2025年第4期185-193,共9页
[目的]为了解决工程中浮筏隔振系统轻量化设计过程工作量大、迭代周期长的问题,提出一种基于RBF-PSO多目标优化算法的轻量化设计方法。[方法]以板架式浮筏隔振系统为研究对象,基于ANSYS APDL建立有限元模型并分析其隔振性能和抗冲击性... [目的]为了解决工程中浮筏隔振系统轻量化设计过程工作量大、迭代周期长的问题,提出一种基于RBF-PSO多目标优化算法的轻量化设计方法。[方法]以板架式浮筏隔振系统为研究对象,基于ANSYS APDL建立有限元模型并分析其隔振性能和抗冲击性能。通过试验测试浮筏的隔振性能,并与数值仿真结果进行对比,验证数值仿真结果的准确性;采用完全有限差分法,对浮筏隔振系统进行参数灵敏度分析,通过灵敏度分析结果选择设计变量,并基于RBF-PSO多目标优化算法对浮筏进行轻量化设计。[结果]研究结果表明:轻量化设计后,筏架质量为63.03kg,相较原筏架减重31.92%。与此同时,浮筏隔振系统的隔振性能提升了2.48dB,设备的抗冲击性能也有所提升。RBF-PSO多目标优化算法优化值与数值仿真计算值误差小于1%。[结论]RBF-PSO多目标优化算法可有效应用于浮筏隔振系统的轻量化设计中。 展开更多
关键词 浮筏隔振系统 隔振 灵敏度分析 RBF神经网络 粒子群算法 轻量化设计
在线阅读 下载PDF
基于PSO-BP神经网络的单位注浆量预测 被引量:2
15
作者 陈泓 黄永辉 +1 位作者 张智宇 陈成志 《有色金属(中英文)》 北大核心 2025年第2期288-297,共10页
帷幕注浆作为矿山控制地下水的重要手段之一,对矿山的安全生产十分重要,单位注浆量作为注浆效果的关键评价指标,具有不确定性。基于尖山磷矿帷幕注浆试验段注浆数据,进行单位注浆量影响因素相关性分析,分别构建单位注浆量卷积神经网络(C... 帷幕注浆作为矿山控制地下水的重要手段之一,对矿山的安全生产十分重要,单位注浆量作为注浆效果的关键评价指标,具有不确定性。基于尖山磷矿帷幕注浆试验段注浆数据,进行单位注浆量影响因素相关性分析,分别构建单位注浆量卷积神经网络(CNN)、BP神经网络、遗传算法优化神经网络(GA-BP)和粒子群算法优化神经网络(PSO-BP)预测模型进行预测和准确性分析。结果表明:斯皮尔曼相关系数法和肯德尔相关系数法对单位注浆量影响因素分析结果一致,影响因素相关性由强到弱为:注浆持续时间、水灰比、注前透水率、注浆段长度、注浆压力、钻孔深度;PSO-BP神经网络模型预测效果明显优于另外三种预测模型,R^(2)达到0.94527,RMSE值分别降低80%、56%、49%;MAE值分别降低68.3%、48.6%、23.2%,验证了该模型的优越性。该模型能够更准确地对单位注浆量进行预测,对后续注浆工作的实施具有一定参考,可为帷幕注浆效果评价提供重要的指导建议。 展开更多
关键词 帷幕注浆 单位注浆量 相关性分析 BP神经网络 粒子群优化算法
在线阅读 下载PDF
基于IPSO-BPNN的电机控制方法研究 被引量:2
16
作者 梁策 张兵 朱建阳 《机床与液压》 北大核心 2025年第7期81-87,共7页
永磁同步电机是一个典型的非线性多变量强耦合系统,会受外部扰动、参数摄动和磁场非线性等因素的影响。针对这一问题,提出一种使用改进粒子群算法优化BP神经网络的PID控制器(IPSO-BPNN-PID)。通过引入自适应变异与随机权重对粒子群算法... 永磁同步电机是一个典型的非线性多变量强耦合系统,会受外部扰动、参数摄动和磁场非线性等因素的影响。针对这一问题,提出一种使用改进粒子群算法优化BP神经网络的PID控制器(IPSO-BPNN-PID)。通过引入自适应变异与随机权重对粒子群算法进行优化,以提升算法的全局搜索能力与收敛速度。利用IPSO算法优化神经网络的初始权值,提升了神经网络的学习速度;并结合神经网络的非线性逼近能力,对PID进行在线调节,以提高PID的响应速度和精度。建立PMSM双闭环调速系统,并采用优化后的IPSO-BPNN算法对PID控制器参数进行在线整定。结果表明:与标准粒子群算法相比,改进后的粒子群算法适应度更佳,收敛速度比标准PSO算法快24%;IPSO-BPNN-PID控制器的平均响应速度分别比PID控制器和BPNN-PID控制器提高了53.57%、19.77%,平均超调量比BPNN-PID控制器低41.67%,表明提出的IPSO-BPNN-PID控制器显著提升了PMSM驱动系统的响应速度和动态抗扰动能力等性能。 展开更多
关键词 永磁同步电机 粒子群算法 神经网络控制器 电机控制方法
在线阅读 下载PDF
基于粒子群优化算法的量子卷积神经网络 被引量:1
17
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子群优化算法 量子机器学习 参数化量子电路
在线阅读 下载PDF
基于PSO-BP神经网络模型的浸胶竹束干燥过程含水率预测
18
作者 王晓曼 吕建雄 +5 位作者 李贤军 吴义强 李新功 郝晓峰 乔建政 徐康 《林业科学》 北大核心 2025年第5期187-198,共12页
【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测... 【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测数据,以干燥温度、干燥时间、铺装方式和初始含水率为输入变量,干燥过程含水率为输出变量,制作数据集。将数据集划分为训练集(308个测试数据,占总数据量的70%)、验证集(66个测试数据,占总数据量的15%)和测试集(66个测试数据,占总数据量的15%),采用粒子群优化算法(PSO)优化反向传播(BP)神经网络初始权重与阈值,构建PSO-BP神经网络预测模型,并进行验证分析。【结果】PSO-BP神经网络模型具有较强的预测能力,在模型测试集中,决定系数(R^(2))、均方误差(MSE)、平均绝对误差(MAE)和剩余预测残差(RPD)分别达0.98、1.27、3.73和7.96。相较BP神经网络,PSO-BP神经网络的R^(2)和RPD分别提高6.53%和110.2%,MSE和MAE分别降低54.0%和71.86%。模型验证表明,干燥温度和铺装方式是影响浸胶竹束干燥过程含水率变化的主要因素,二者对PSO-BP神经网络模型预测结果影响显著。干燥温度为60℃时,在4种不同铺装方式下PSO-BP神经网络模型展现出较好预测效果,其R^(2)均超过0.969且MSE均低于3;铺装层数为3时,在4种不同干燥温度下PSO-BP神经网络模型表现最佳,其R^(2)均超过0.99且MSE均低于2。干燥时间和浸胶竹束初始含水率对PSO-BP神经网络模型预测结果影响不显著。【结论】PSO-BP神经网络模型在浸胶竹束干燥过程含水率预测中表现出准确性,可有效解决传统BP神经网络预测误差大、收敛速度慢等问题,为浸胶竹束高质高效干燥提供技术支撑。 展开更多
关键词 浸胶竹束 干燥 含水率 粒子群优化算法 反向传播 神经网络
在线阅读 下载PDF
基于内外双视角的高速铁路风险预测
19
作者 夏溪蔓 孟学雷 +2 位作者 程晓卿 林立 韩正 《铁道科学与工程学报》 北大核心 2025年第7期2921-2931,共11页
精准预测高速铁路风险对高速铁路安全管理至关重要。为有效预测高速铁路运行中的风险概率,解决事故诱因内外部特征的提取与学习过程难以同时兼顾的问题,提出一种考虑事故诱因拓扑结构的内外双视角的高速铁路风险预测模型(internal and e... 精准预测高速铁路风险对高速铁路安全管理至关重要。为有效预测高速铁路运行中的风险概率,解决事故诱因内外部特征的提取与学习过程难以同时兼顾的问题,提出一种考虑事故诱因拓扑结构的内外双视角的高速铁路风险预测模型(internal and external perspectives on the topological dendrogram of accident causes,IEPTDAC)。首先,基于树状结构刻画事故内部诱因的拓扑关系,从“人、机、环、管”4个方面提取事故诱因的外部特征;在此基础上,采用卷积神经网络的多层卷积操作提取事故诱因的内外部特征,并引入粒子群算法对卷积神经网络的关键超参数进行优化,进一步提升模型的预测性能;最后,选取某铁路局的5个区段,以19个事故诱因与风险事故数据作为研究对象,在1、3和5 h的时间粒度下,分别采用9种既有预测模型与IEPTDAC模型进行对比分析。实验结果表明,相较于现有的组合预测模型以及传统的单一预测模型,IEPTDAC模型拥有更优的预测精度和拟合效果。例如,在1 h时间粒度下,对比实验中基于暂态提取变换与DSRNet-AttBiLSTM的预测模型,IEPTDAC模型的平均绝对误差fmae降低了32.04%,均方根误差f_(rmse)降低了36.35%,决定系数f_(r^(2))提高了0.46%;在1、3和5 h的时间粒度下,IEPTDAC与传统的ConvLSTM(convolutional long short-term memory)模型相比,f_(r^(2))分别提高1.71%、3.00%、1.27%。此外,本文设计的模型消融实验验证了IEPTDAC模型各分支的合理性和有效性。该方法为高速铁路风险预测提供了一种有效的技术手段。 展开更多
关键词 高速铁路 卷积神经网络 深度学习 多尺度风险预测 粒子群优化算法
在线阅读 下载PDF
基于PSO-ChOA优化的轴流风机故障诊断模型
20
作者 吕亚楠 赵康 +1 位作者 马草原 郑璐 《机电工程》 北大核心 2025年第2期373-386,共14页
传统的风机故障诊断技术依赖大量的历史数据,在参数优化和算法选择上存在早熟收敛问题,且在风机故障诊断过程中需要精确采集信号,但实际应用中受限于传感器安装条件,影响了数据的准确性和诊断的有效性。针对这些问题,提出了一种融合改... 传统的风机故障诊断技术依赖大量的历史数据,在参数优化和算法选择上存在早熟收敛问题,且在风机故障诊断过程中需要精确采集信号,但实际应用中受限于传感器安装条件,影响了数据的准确性和诊断的有效性。针对这些问题,提出了一种融合改进粒子群优化算法(PSO)与黑猩猩优化算法(ChOA)混合优化策略(PSO-ChOA)的VMD-CNN-Transformer模型,应用于轴流风机故障诊断。首先,通过仿真和实验获取了七种风机典型电气故障信号和三种离心风机轴承故障信号,并进行了预处理以满足算法训练要求;然后,使用PSO对ChOA的狩猎搜索阶段进行了优化,减少了人为设定参数对模型训练的影响,通过构建23个标准测试函数,分析了PSO-ChOA算法在收敛速度和全局优化上的优势;最后,利用变分模态分解(VMD)提取了故障特征,并利用卷积神经网络-Transformer(CNN-Transformer)模型进行了分类,采用实例分析了该模型在处理非线性和高维数据时的强大能力。研究结果表明:相较于传统算法,PSO-ChOA算法在收敛速度上的优势显著,能够更快地跳出局部最优,避免早熟收敛,同时保持较高的搜索精度,最终找到更接近全局最优的解;采用PSO-ChOA优化的VMD-CNN-Transformer模型在风机故障诊断任务中达到了97.76%的准确率,较VMD-CNN-Transformer方法,准确率提升了6.64%;PSO-ChOA在参数优化领域的应用潜力,为工业设备故障诊断研究提供了新的视角。 展开更多
关键词 离心式风机 复杂非线性信号 粒子群优化 黑猩猩优化算法 卷积神经网络-Transformer模型 变分模态分解
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部