为提高势垒型中波InAs/InAsSb二类超晶格红外探测器器件性能,研究并设计了nBn势垒型InAs/InAsSb器件结构。针对InAs/InAsSb红外探测器器件结构特征,分析了暗电流的主导机制和能带特性,采用基于泊松方程、连续性方程和热方程的数值计算方...为提高势垒型中波InAs/InAsSb二类超晶格红外探测器器件性能,研究并设计了nBn势垒型InAs/InAsSb器件结构。针对InAs/InAsSb红外探测器器件结构特征,分析了暗电流的主导机制和能带特性,采用基于泊松方程、连续性方程和热方程的数值计算方法,通过精确调控吸收层掺杂、势垒层掺杂、势垒层厚度、温度和组分等,构建出高能量势垒以有效阻挡多数载流子,允许少数载流子迁移,实现价带偏移(Valence Band Offset,VBO)接近于零的要求,从而有效降低暗电流。研究结果表明,在1×10^(15)~1×10^(17)cm^(-3)范围内降低势垒层掺杂浓度,VBO和暗电流开启电压绝对值均会减小,当AlAs1-xSbx势垒中Sb组分为0.91时,VBO接近于零。对于吸收层,随着掺杂浓度的提高,暗电流呈现减小趋势,但趋势较不明显。在-0.5V偏压,140 K工作条件下,吸收层和势垒层掺杂浓度分别为1×10^(13)cm^(-3),1×10^(15)cm^(-3),吸收层与势垒层厚度分别为3μm,80 nm,得到器件结构参数优化后的暗电流低至4.5×10^(-7)A/cm^(2),证明InAs/InAsSb中波红外探测器具有高温工作的应用前景,可广泛应用于导弹预警、红外制导、航空航天等领域。展开更多
Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hin...Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hinder system integration due to their specific manufacturing processes.Conversely,metal oxide diodes,with their simple fabrication techniques,offer advantages for system integration.The oxygen vacancy defect of oxide semiconductor will greatly affect the electrical performance of the device,so the performance of the diode can be effectively controlled by adjusting the oxygen vacancy concentration.This study centers on optimizing the performance of diodes by modulating the oxygen vacancy concentration within InGaZnO films through control of oxygen flows during the sputtering process.Experimental results demonstrate that the diode exhibits a forward current density of 43.82 A·cm^(−2),with a rectification ratio of 6.94×10^(4),efficiently rectifying input sine signals with 1 kHz frequency and 5 V magnitude.These results demonstrate its potential in energy conversion and management.By adjusting the oxygen vacancy,a methodology is provided for optimizing the performance of rectifying diodes.展开更多
文摘为提高势垒型中波InAs/InAsSb二类超晶格红外探测器器件性能,研究并设计了nBn势垒型InAs/InAsSb器件结构。针对InAs/InAsSb红外探测器器件结构特征,分析了暗电流的主导机制和能带特性,采用基于泊松方程、连续性方程和热方程的数值计算方法,通过精确调控吸收层掺杂、势垒层掺杂、势垒层厚度、温度和组分等,构建出高能量势垒以有效阻挡多数载流子,允许少数载流子迁移,实现价带偏移(Valence Band Offset,VBO)接近于零的要求,从而有效降低暗电流。研究结果表明,在1×10^(15)~1×10^(17)cm^(-3)范围内降低势垒层掺杂浓度,VBO和暗电流开启电压绝对值均会减小,当AlAs1-xSbx势垒中Sb组分为0.91时,VBO接近于零。对于吸收层,随着掺杂浓度的提高,暗电流呈现减小趋势,但趋势较不明显。在-0.5V偏压,140 K工作条件下,吸收层和势垒层掺杂浓度分别为1×10^(13)cm^(-3),1×10^(15)cm^(-3),吸收层与势垒层厚度分别为3μm,80 nm,得到器件结构参数优化后的暗电流低至4.5×10^(-7)A/cm^(2),证明InAs/InAsSb中波红外探测器具有高温工作的应用前景,可广泛应用于导弹预警、红外制导、航空航天等领域。
文摘Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hinder system integration due to their specific manufacturing processes.Conversely,metal oxide diodes,with their simple fabrication techniques,offer advantages for system integration.The oxygen vacancy defect of oxide semiconductor will greatly affect the electrical performance of the device,so the performance of the diode can be effectively controlled by adjusting the oxygen vacancy concentration.This study centers on optimizing the performance of diodes by modulating the oxygen vacancy concentration within InGaZnO films through control of oxygen flows during the sputtering process.Experimental results demonstrate that the diode exhibits a forward current density of 43.82 A·cm^(−2),with a rectification ratio of 6.94×10^(4),efficiently rectifying input sine signals with 1 kHz frequency and 5 V magnitude.These results demonstrate its potential in energy conversion and management.By adjusting the oxygen vacancy,a methodology is provided for optimizing the performance of rectifying diodes.