MPEG-4 fine-granularity-scalable (FGS) technology is an effective solution to resolve the network bandwidth varying because FGS provides very fine granular SNR scalability. However, this scalability is obtained with...MPEG-4 fine-granularity-scalable (FGS) technology is an effective solution to resolve the network bandwidth varying because FGS provides very fine granular SNR scalability. However, this scalability is obtained with sacrifice of coding efficiency. An one-loop FGS structure is presented based on motion compensation (MC + FGS) to improve the coding efficiency of base FGS. Then it describes and discusses the hybrid spatial-SNR FGS (FGSS) structure that extends SNR scalability of FGS to spatial scalability (spatio-SNR scalability). FGSS structure inherent the low coding efficiency of FGS structure. Combining MC + FGS structure with FGSS structure, a structure of MC + FGSS structure is obtained which acquires both structures' advantages and counteracts both structures' defects. Experimental results prove the MC+ FGSS structure not only obtains fine granular spatio-SNR scalability, but also achieves high coding efficiency.展开更多
针对当前互联网流媒体传输的时延敏感性问题,提出一种基于OpenFlow的SVC(scalable video coding,可分级视频编码)流媒体时延自适应分级传输方法,该方法有效结合SVC流媒体可分级和OpenFlow灵活可编程的特性,在网络带宽受限和链路拥塞的...针对当前互联网流媒体传输的时延敏感性问题,提出一种基于OpenFlow的SVC(scalable video coding,可分级视频编码)流媒体时延自适应分级传输方法,该方法有效结合SVC流媒体可分级和OpenFlow灵活可编程的特性,在网络带宽受限和链路拥塞的复杂网络环境下,通过构建基础层和增强层2个独立路由,实现了动态网络下SVC流媒体分级自适应高效传输。仿真结果表明,该方法在提升SVC流媒体传输效率和质量,改善用户体验方面有重要作用。展开更多
文摘MPEG-4 fine-granularity-scalable (FGS) technology is an effective solution to resolve the network bandwidth varying because FGS provides very fine granular SNR scalability. However, this scalability is obtained with sacrifice of coding efficiency. An one-loop FGS structure is presented based on motion compensation (MC + FGS) to improve the coding efficiency of base FGS. Then it describes and discusses the hybrid spatial-SNR FGS (FGSS) structure that extends SNR scalability of FGS to spatial scalability (spatio-SNR scalability). FGSS structure inherent the low coding efficiency of FGS structure. Combining MC + FGS structure with FGSS structure, a structure of MC + FGSS structure is obtained which acquires both structures' advantages and counteracts both structures' defects. Experimental results prove the MC+ FGSS structure not only obtains fine granular spatio-SNR scalability, but also achieves high coding efficiency.
文摘针对当前互联网流媒体传输的时延敏感性问题,提出一种基于OpenFlow的SVC(scalable video coding,可分级视频编码)流媒体时延自适应分级传输方法,该方法有效结合SVC流媒体可分级和OpenFlow灵活可编程的特性,在网络带宽受限和链路拥塞的复杂网络环境下,通过构建基础层和增强层2个独立路由,实现了动态网络下SVC流媒体分级自适应高效传输。仿真结果表明,该方法在提升SVC流媒体传输效率和质量,改善用户体验方面有重要作用。