Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estima...Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estimation of multi-LFM signals, and a method of the SPWVD binarization by a dynamic threshold based on the Otsu algorithm is proposed. The proposed method is effective in the demand for the estimation of different parameters and the unknown signal-to-noise ratio (SNR) circumstance. The performance of this method is confirmed by numerical simulation.展开更多
An Approximate Voronoi Boundary Network is constructed as the environmental model by way of enlar-ging the obstacle raster. The connectivity of the path network under complex environment is ensured through build-ing t...An Approximate Voronoi Boundary Network is constructed as the environmental model by way of enlar-ging the obstacle raster. The connectivity of the path network under complex environment is ensured through build-ing the second order Approximate Voronoi Boundary Network after adding virtual obstacles at joint-close grids. Thismethod embodies the network structure of the free area of environment with less nodes, so the complexity of pathplanning problem is reduced largely. An optimized path for mobile robot under complex environment is obtainedthrough the Genetic Algorithm based on the elitist rule and re-optimized by using the path-tightening method. Sincethe elitist one has the only authority of crossover, the management of one group becomes simple, which makes forobtaining the optimized path quickly. The Approximate Voronoi Boundary Network has a good tolerance to the im-precise a priori information and the noises of sensors under complex environment. Especially it is robust in dealingwith the local or partial changes, so a small quantity of dynamic obstacles is difficult to alter the overall character ofits connectivity, which means that it can also be adopted in dynamic environment by fusing the local path planning.展开更多
针对传统快速随机搜索树^(*)(rapidly-exploring random tree^(*),RRT^(*))算法收敛速率较慢,且不适用于动态场景等问题,提出一种基于目标点偏置和冗余节点删除的改进RRT*算法,用于解决移动机器人快速找到无碰撞最优路径的问题。此算法...针对传统快速随机搜索树^(*)(rapidly-exploring random tree^(*),RRT^(*))算法收敛速率较慢,且不适用于动态场景等问题,提出一种基于目标点偏置和冗余节点删除的改进RRT*算法,用于解决移动机器人快速找到无碰撞最优路径的问题。此算法在RRT^(*)算法基础上,首先对采样点进行优化处理,保证路径最优的同时减少搜寻时间;其次引入路径节点最大值概念,删除扩展树冗余节点以提高算法效率;最后结合动态窗口(dynamic window approaches,DWA)算法提高路径的安全性和平滑性,实现对动态障碍物的避障。通过3种不同地图下的仿真验证,改进算法能有效提升路径质量,且大幅降低运行时间。展开更多
基金supported by the National Natural Science Foundation of China (61302188)the Nanjing University of Science and Technology Research Foundation (2010ZDJH05)
文摘Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estimation of multi-LFM signals, and a method of the SPWVD binarization by a dynamic threshold based on the Otsu algorithm is proposed. The proposed method is effective in the demand for the estimation of different parameters and the unknown signal-to-noise ratio (SNR) circumstance. The performance of this method is confirmed by numerical simulation.
基金Project (60234030) supported by the National Natural Science Foundation of China
文摘An Approximate Voronoi Boundary Network is constructed as the environmental model by way of enlar-ging the obstacle raster. The connectivity of the path network under complex environment is ensured through build-ing the second order Approximate Voronoi Boundary Network after adding virtual obstacles at joint-close grids. Thismethod embodies the network structure of the free area of environment with less nodes, so the complexity of pathplanning problem is reduced largely. An optimized path for mobile robot under complex environment is obtainedthrough the Genetic Algorithm based on the elitist rule and re-optimized by using the path-tightening method. Sincethe elitist one has the only authority of crossover, the management of one group becomes simple, which makes forobtaining the optimized path quickly. The Approximate Voronoi Boundary Network has a good tolerance to the im-precise a priori information and the noises of sensors under complex environment. Especially it is robust in dealingwith the local or partial changes, so a small quantity of dynamic obstacles is difficult to alter the overall character ofits connectivity, which means that it can also be adopted in dynamic environment by fusing the local path planning.
文摘针对传统快速随机搜索树^(*)(rapidly-exploring random tree^(*),RRT^(*))算法收敛速率较慢,且不适用于动态场景等问题,提出一种基于目标点偏置和冗余节点删除的改进RRT*算法,用于解决移动机器人快速找到无碰撞最优路径的问题。此算法在RRT^(*)算法基础上,首先对采样点进行优化处理,保证路径最优的同时减少搜寻时间;其次引入路径节点最大值概念,删除扩展树冗余节点以提高算法效率;最后结合动态窗口(dynamic window approaches,DWA)算法提高路径的安全性和平滑性,实现对动态障碍物的避障。通过3种不同地图下的仿真验证,改进算法能有效提升路径质量,且大幅降低运行时间。