针对能量收集无线传感器网络中,能量预测精度不佳、节点能量利用效率过低和网络难以持续运行等问题,提出了一种改进样本卷积交互神经网络(sample convolution and interaction network,SCINet)预测模型,并引入概率稀疏自注意力机制,在...针对能量收集无线传感器网络中,能量预测精度不佳、节点能量利用效率过低和网络难以持续运行等问题,提出了一种改进样本卷积交互神经网络(sample convolution and interaction network,SCINet)预测模型,并引入概率稀疏自注意力机制,在新特征序列的每个时间步上计算注意力权重,捕捉重要特征,提高模型预测精度.最后,根据节点剩余能量、预测未来可收集的太阳能能量,对分簇路由算法进行改进.仿真实验结果表明,该能量预测模型具备更高的预测精度和泛化能力.在能量预测模型的基础上,改进的分簇路由算法,能有效地延长无线传感器网络的生命周期.展开更多
文摘针对能量收集无线传感器网络中,能量预测精度不佳、节点能量利用效率过低和网络难以持续运行等问题,提出了一种改进样本卷积交互神经网络(sample convolution and interaction network,SCINet)预测模型,并引入概率稀疏自注意力机制,在新特征序列的每个时间步上计算注意力权重,捕捉重要特征,提高模型预测精度.最后,根据节点剩余能量、预测未来可收集的太阳能能量,对分簇路由算法进行改进.仿真实验结果表明,该能量预测模型具备更高的预测精度和泛化能力.在能量预测模型的基础上,改进的分簇路由算法,能有效地延长无线传感器网络的生命周期.