期刊文献+
共找到822篇文章
< 1 2 42 >
每页显示 20 50 100
Sage-Husa自适应卡尔曼滤波在超声波时差测量中的应用
1
作者 洪利 尹晓琦 +6 位作者 杨航 张兴宇 陈嘉雪 李晨雪 姜坤 王赫鑫 李正豪 《传感技术学报》 北大核心 2025年第1期150-154,共5页
在超声波时差法测量系统中,由于时差测量过程干扰因素的影响,时差数据在采集的过程中会出现误差,因此,引入Sage-Husa自适应卡尔曼滤波算法对时差数据进行滤波,该算法通过更新系统噪声和过程协方差实现对时差数据的误差估计。在Sage-Hus... 在超声波时差法测量系统中,由于时差测量过程干扰因素的影响,时差数据在采集的过程中会出现误差,因此,引入Sage-Husa自适应卡尔曼滤波算法对时差数据进行滤波,该算法通过更新系统噪声和过程协方差实现对时差数据的误差估计。在Sage-Husa自适应滤波过程中,如果没有预先设置初始值或时差数据变化较大,则第二个滤波后的数据就更新为实测的时差值。当测量的时差数据变化不大时,从滤波结果图中观察到滤波结果近似为直线。在实验中,通过将不同流量点的滤波数据与标准时差数据进行比较,可以看出通过该算法滤波后时差的误差在有效范围之内。 展开更多
关键词 流量数据处理 时差滤波 sage-husa自适应卡尔曼 标准时差 系统噪声 过程协方差
在线阅读 下载PDF
基于指数加权平均的GNSS/SINS组合导航系统Sage-Husa自适应卡尔曼滤波算法
2
作者 林雪原 孙炜玮 《大地测量与地球动力学》 CSCD 北大核心 2024年第12期1287-1292,1320,共7页
测量噪声异常会导致GNSS/SINS组合导航系统滤波精度下降,甚至滤波发散。为解决该问题,首先提出适用于组合导航系统的Sage-Husa自适应卡尔曼滤波方法SHAKF;然后根据滤波新息协方差的理论估计值及实际估计值构建控制因子,提出测量噪声均... 测量噪声异常会导致GNSS/SINS组合导航系统滤波精度下降,甚至滤波发散。为解决该问题,首先提出适用于组合导航系统的Sage-Husa自适应卡尔曼滤波方法SHAKF;然后根据滤波新息协方差的理论估计值及实际估计值构建控制因子,提出测量噪声均方差突变起始时刻及结束时刻的检测方法,构建基于指数函数变化规律的遗忘因子,进而提出基于指数加权平均的Sage-Husa自适应卡尔曼滤波方法EWASHAKF;最后将EWASHAKF应用于GNSS/SINS组合导航系统,并进行仿真实验。结果表明,相对于SHAKF,EWASHAKF能够准确地跟踪测量噪声均方差的各种变化,进而提高组合导航系统的滤波精度。 展开更多
关键词 sage-husa算法 组合导航系统 自适应卡尔曼滤波算法 控制因子 遗忘因子
在线阅读 下载PDF
自适应窗长改进Sage-Husa卡尔曼滤波的结构响应重构
3
作者 路金涛 彭珍瑞 《计算力学学报》 北大核心 2025年第2期212-220,共9页
针对固定窗口估计噪声方差的卡尔曼滤波方法在结构响应重构时窗口长度由经验选取导致重构精度降低的问题,提出了一种自适应窗长改进Sage-Husa卡尔曼滤波ISHKF(improved Sage-Husa Kalman filter)算法的结构响应重构方法。首先,对卡尔曼... 针对固定窗口估计噪声方差的卡尔曼滤波方法在结构响应重构时窗口长度由经验选取导致重构精度降低的问题,提出了一种自适应窗长改进Sage-Husa卡尔曼滤波ISHKF(improved Sage-Husa Kalman filter)算法的结构响应重构方法。首先,对卡尔曼滤波先验误差协方差矩阵应用UD分解以保证其正定性,根据测量先验误差自适应调整窗口长度,再应用Sage-Husa时变噪声估计器,实现测量噪声和系统噪声的同步调节。然后,根据已知的部分加速度响应,结合模态叠加法重构加速度、速度和位移响应。最后通过某动车组齿轮箱的C型支架、二维桁架结构数值仿真和简支梁试验来验证方法的可行性。结果表明所提方法可实现自适应窗长未知噪声方差估计下的结构响应重构,与移动窗卡尔曼滤波方法相比,重构精度更高。 展开更多
关键词 sage-husa卡尔曼滤波 结构响应重构 噪声方差估计 UD分解
在线阅读 下载PDF
基于改进自适应卡尔曼滤波算法的温室UWB定位技术 被引量:1
4
作者 张兆国 朱时亮 +3 位作者 王法安 解开婷 张炅昊 李漫漫 《农业机械学报》 北大核心 2025年第3期494-502,522,共10页
针对农业温室环境中,由于超宽带(Ultra-wideband,UWB)定位技术干扰免疫差和统计特性未知而面临定位精度不足的问题,本文提出一种基于改进自适应卡尔曼滤波(Improved adaptive Kalman filter,IAKF)算法的UWB定位技术。首先,引入异常检测... 针对农业温室环境中,由于超宽带(Ultra-wideband,UWB)定位技术干扰免疫差和统计特性未知而面临定位精度不足的问题,本文提出一种基于改进自适应卡尔曼滤波(Improved adaptive Kalman filter,IAKF)算法的UWB定位技术。首先,引入异常检测机制,以识别滤波过程中的发散现象;进而,通过实时更新量测噪声协方差矩阵,抑制滤波发散,在噪声强波动情况下增强算法适应性;同时,开展3种不同环境噪声下仿真定位试验,对比分析UWB、IAKF、自适应卡尔曼滤波(Adaptive Kalman filter,AKF)及卡尔曼滤波(Kalman filter,KF)算法性能。仿真结果表明,IAKF算法展现出更强的适应性及鲁棒性。以自主开发农用履带车辆为定位载体,于农业温室环境中开展UWB定位试验。试验结果表明,温室环境中,履带车辆在视距(Line of sight,LOS)和非视距(Non line of sight,NLOS)场景下,较AKF和KF算法,IAKF算法定位精度分别提高22.2%、13.0%和20.0%、15.4%。 展开更多
关键词 温室 精确定位 超宽带 改进自适应卡尔曼滤波
在线阅读 下载PDF
电动汽车状态改进自适应卡尔曼滤波估计测试
5
作者 潘明存 乔丽霞 +1 位作者 何勋 董峰 《机械设计与制造》 北大核心 2025年第5期59-63,共5页
为了提高电动汽车状态估计精度,设计了一种新型结构的改进自适应卡尔曼滤波算法(Improved Adaptive Kalman Filter,IAKF)。对滑动窗口长度进行自主调节,同时利用该算法来实现卡尔曼滤波增益以及估计噪声协方差自适应分析,相对传统形式... 为了提高电动汽车状态估计精度,设计了一种新型结构的改进自适应卡尔曼滤波算法(Improved Adaptive Kalman Filter,IAKF)。对滑动窗口长度进行自主调节,同时利用该算法来实现卡尔曼滤波增益以及估计噪声协方差自适应分析,相对传统形式的协方差直接更新方式与噪声协方差自适应算法可以达到更准确的结果。研究结果表明:相对扩展卡尔曼滤波方法(Extended Kalman Filter,EKF)与Sage-Husa自适应扩展卡尔曼滤波(Sage-Husa Adaptive Kalman Filter,SHAKF),IAKF可以达到更高估计精度。当噪声与实际统计特征存在差异时,相对最初误差提高近30倍,精度明显下降。随着最小滑动窗口长度减小后,可以使状态估计过程获得更快动态响应速率。实验测试证明这里估计算法能够达到高估计精度以及良好的鲁棒能力。算法负荷测试结果显示都在1ms内,能够满足10ms内的步长要求,达到算法实时性的效率标准。 展开更多
关键词 电动汽车 状态估计 卡尔曼滤波 分布式驱动 自适应控制
在线阅读 下载PDF
基于改进自适应卡尔曼滤波的遮挡场景人体关节重定位方法研究
6
作者 李国友 卢凯 +2 位作者 李宏 张友浪 柴子华 《计算机应用与软件》 北大核心 2025年第5期155-163,共9页
针对Kinect V2受到自身误差和关节遮挡的影响导致采集的人体关节数据出现抖动与缺失的问题,提出将改进的自适应卡尔曼滤波算法与人体运动学特征融合的方法。在自适应卡尔曼滤波算法中引入滤波收敛性判据与骨骼失真系数以减少算法计算量... 针对Kinect V2受到自身误差和关节遮挡的影响导致采集的人体关节数据出现抖动与缺失的问题,提出将改进的自适应卡尔曼滤波算法与人体运动学特征融合的方法。在自适应卡尔曼滤波算法中引入滤波收敛性判据与骨骼失真系数以减少算法计算量并加快自适应参数收敛速度,结合人体骨骼长度不变性与运动连续性获取被遮挡关节的先验坐标测量值,再代入改进的自适应卡尔曼滤波算法以获得被遮挡关节的重定位坐标。实验结果表明,该方法能够满足用户实时性需求,并有效提高人体关节数据准确性。 展开更多
关键词 Kinect V2 骨骼数据 自适应卡尔曼滤波 人体运动学
在线阅读 下载PDF
联合改进滑模观测器的自适应卡尔曼滤波荷电状态估计
7
作者 钱伟 王浩宇 +1 位作者 郭向伟 李万 《电工技术学报》 北大核心 2025年第6期1984-1994,共11页
锂电池荷电状态(SOC)的精确估计对于提高电池能量利用率、保障电池安全运行具有重要意义。针对模型不确定性导致基于卡尔曼滤波(KF)的SOC估计方法精度低的问题,提出一种联合改进型滑模观测器(ISMO)的自适应扩展卡尔曼滤波(AEKF)算法,以... 锂电池荷电状态(SOC)的精确估计对于提高电池能量利用率、保障电池安全运行具有重要意义。针对模型不确定性导致基于卡尔曼滤波(KF)的SOC估计方法精度低的问题,提出一种联合改进型滑模观测器(ISMO)的自适应扩展卡尔曼滤波(AEKF)算法,以实现SOC高精度估计。首先,基于双极化(DP)等效电路模型建立融合饱和函数的ISMO,以降低传统滑模观测器的抖振。其次,设计一种新型自适应衰减因子,以降低过往陈旧测量数据对扩展卡尔曼滤波估计结果的影响,并基于融合饱和函数的ISMO,实现联合ISMO的AEKF估计方法设计。最后,基于自主实验平台获取实测模拟工况数据搭建仿真模型,验证了所提ISMO_AEKF算法在不同工况下,相比于AEKF、ISMO_EKF和其他同类型联合算法,具有更高的估计精度及鲁棒性。 展开更多
关键词 荷电状态 饱和函数 滑模观测器 自适应衰减因子 卡尔曼滤波
在线阅读 下载PDF
基于新息自适应卡尔曼滤波地铁测速定位方法 被引量:1
8
作者 万俊豪 左建勇 +1 位作者 丁景贤 潘宇 《仪器仪表学报》 北大核心 2025年第1期236-246,共11页
城市轨道交通车辆的测速定位存在可用传感器较少,小半径曲线和大坡度变化线路多,运行工况变化频繁,实时性与精度要求更高等问题。提出了基于新息自适应卡尔曼滤波的测速定位方法,以无人驾驶地铁为研究对象,首先基于先验牵引制动目标级... 城市轨道交通车辆的测速定位存在可用传感器较少,小半径曲线和大坡度变化线路多,运行工况变化频繁,实时性与精度要求更高等问题。提出了基于新息自适应卡尔曼滤波的测速定位方法,以无人驾驶地铁为研究对象,首先基于先验牵引制动目标级位约束,将列车视为一维刚性均布质量模型,考虑列车经过等效变坡点的动力学行为,建立修正机动加速度的列车运动模型。然后基于新息自适应卡尔曼滤波实时估计与修正受到运行工况与线路情况变化影响的统计噪声。最后以3种典型工况的实车数据为例,基于16组动车轴速信息进行测速定位,并对比采用平均轴速法与无自适应估计噪声的常规卡尔曼滤波算法下的6种精度评价指标,结果表明:采用该方法有效修正轮轨蠕滑引起的渐进型数据漂移,减少高速区高频噪声,速度误差均方根为0.349 0 km·h^(-1),制动停车位置误差为0.491 3 m,具备较高的测速与定位精度;在高速区轴速存在1.5%比例随机缺失工况下,速度误差均方根可稳定在0.371 7 km·h^(-1)左右,制动停车位置误差可稳定在0.042 0 m左右,对高速区测量轴速缺失具备较强鲁棒性;在列车滑行工况下,速度误差均方根为0.360 1 km·h^(-1),制动停车位置误差为0.310 5 m,对列车空转滑行具备较强鲁棒性。研究结果能够为无人驾驶地铁列车精确测速定位提供理论依据与工程参考。 展开更多
关键词 无人驾驶地铁 测速定位方法 机动加速度 新息自适应卡尔曼滤波
在线阅读 下载PDF
基于改进自适应交互式多模型无迹卡尔曼滤波算法的车辆目标跟踪
9
作者 南奔洋 匡兵 景晖 《科学技术与工程》 北大核心 2025年第11期4605-4611,共7页
为解决传统交互式多模型(interactive multiple model, IMM)算法在车辆目标跟踪中存在模型概率变化不明显和跟踪精度不足问题,提出一种改进的自适应IMM-UKF(unscented Kalman filter)算法。首先采用匀速直线、匀加速直线和匀速转弯来建... 为解决传统交互式多模型(interactive multiple model, IMM)算法在车辆目标跟踪中存在模型概率变化不明显和跟踪精度不足问题,提出一种改进的自适应IMM-UKF(unscented Kalman filter)算法。首先采用匀速直线、匀加速直线和匀速转弯来建立车辆的运动模型,并通过无迹卡尔曼滤波对车辆目标进行跟踪。然后将子模型概率变化率作为IMM算法修正参数,对马尔可夫矩阵主对角线和非主对角线元素采用不同的修正策略。最后设置判定窗修正归一化后的马尔可夫矩阵主对角线元素,以扩大匹配模型的概率。结果表明,改进算法模型概率变化更加明显,位置和速度均方根误差均要小于原有算法,有效地提高了跟踪精度。 展开更多
关键词 目标跟踪 交互式多模型 自适应 马尔可夫矩阵 无迹卡尔曼滤波
在线阅读 下载PDF
基于自适应抗噪卡尔曼滤波的组合导航方法 被引量:1
10
作者 张溢 顾晶 《电子测量技术》 北大核心 2025年第2期92-100,共9页
随着自动驾驶的迅速发展,对高精度车辆导航实时定位技术的需求日益迫切。在常用的GNSS/INS组合导航中,自适应卡尔曼滤波是一种常用的状态预测方法,然而,在复杂的动态环境下,其在应对GNSS多路径噪声和实时变化的过程噪声方面存在局限。... 随着自动驾驶的迅速发展,对高精度车辆导航实时定位技术的需求日益迫切。在常用的GNSS/INS组合导航中,自适应卡尔曼滤波是一种常用的状态预测方法,然而,在复杂的动态环境下,其在应对GNSS多路径噪声和实时变化的过程噪声方面存在局限。针对这一问题,本文提出了一种自适应抗噪卡尔曼滤波算法,用于抑制GNSS测量噪声和动态过程噪声。该算法通过变分模态分解-小波去噪对原始GNSS测量数据进行预处理,提高了数据融合的输入精度;其次,在数据融合过程中,加入了随车辆环境实时变化的动态噪声缩放因子。通过以上两个去噪步骤,整体上有效抑制了噪声不确定性对导航精度的干扰。通过仿真模拟和真实车载实验验证了所提方法的有效性,与传统自适应卡尔曼滤波算法相比,本算法的位置估计和速度估计误差分别降低了37.7%和42.8%,显著提升了移动车辆速度和位置的高精度估计能力。 展开更多
关键词 组合导航 自适应卡尔曼滤波 抗噪 传感器融合 变分模态分解
在线阅读 下载PDF
基于自适应双向鲁棒卡尔曼滤波方法的半航空电磁探测高程校正
11
作者 王研博 武欣 石金晶 《地球物理学报》 北大核心 2025年第8期3268-3281,共14页
在半航空电磁探测中,传感器的离地高度是重要的反演参数,一般通过传感器GPS高程减去地表高程获得.传感器GPS高程测量具有较高的精度,但在许多实际工作中,测区精细地表高程难以获得.解决上述问题的一种方案是通过航空光学观测构建精细地... 在半航空电磁探测中,传感器的离地高度是重要的反演参数,一般通过传感器GPS高程减去地表高程获得.传感器GPS高程测量具有较高的精度,但在许多实际工作中,测区精细地表高程难以获得.解决上述问题的一种方案是通过航空光学观测构建精细地表模型,但这一方案往往意味着额外增加的人员、工作量与成本.另一方案是采用公开的国际高程观测数据,其在基本保证模型精度的条件下,显著降低了人员与施工成本,因此也有利于半航空电磁探测方法与技术的推广.然而,由于这类高程模型往往基于星载观测,受观测路径上的障碍物影响,其所提供的高程模型将在某些区域存在不合理的跳点.当所设计的测线穿过上述区域时,获得的地表高程剖面将不再连续,从而严重影响后续处理工作.针对上述问题,本文提出一种自适应双向鲁棒卡尔曼滤波方法,其通过马氏距离对原始数据集中的异常值进行识别,并在此基础上使用自适应卡尔曼滤波策略进行处理.本文将该此方法应用于实际高程数据集,并与其他方法进行比较.结果表明,所提出方法获得的校正高程数据准确性高,对确保后续处理的可靠性具有显著意义. 展开更多
关键词 半航空电磁探测 自适应双向鲁棒卡尔曼滤波方法 高程校正
在线阅读 下载PDF
基于自适应双层无迹卡尔曼滤波神经网络的铝电解电流效率预测模型
12
作者 方小燕 姚立忠 +2 位作者 罗海军 张玉泽 易军 《控制理论与应用》 北大核心 2025年第3期579-589,共11页
针对铝电解过程强干扰和强时变导致模型精确度和稳定性不佳的难题,本文提出一种基于自适应双层无迹卡尔曼滤波神经网络的建模方法.该方法首先构建一种双层无迹卡尔曼滤波神经网络模型,以提高模型对扰动系统的稳定性.具体为:使用双层无... 针对铝电解过程强干扰和强时变导致模型精确度和稳定性不佳的难题,本文提出一种基于自适应双层无迹卡尔曼滤波神经网络的建模方法.该方法首先构建一种双层无迹卡尔曼滤波神经网络模型,以提高模型对扰动系统的稳定性.具体为:使用双层无迹卡尔曼滤波在线更新神经网络的权值和阈值;然后,在双层无迹卡尔曼滤波神经网络的状态变量均方误差中引入约束调节参数;同时,采用梯度下降法自适应调整比例调节参数,将其均方误差约束至较小的范围内,以此来削弱滤波递归计算过程中误差累积对模型的影响;最后,通过铝电解电流效率预测,验证了本文所提方法具有较高的精确度和稳定性. 展开更多
关键词 铝电解 自适应建模 双层无迹卡尔曼滤波 人工神经网络 电流效率
在线阅读 下载PDF
交点分类融合自适应卡尔曼滤波的UWB定位算法
13
作者 张永贤 陈晶旗 管风景 《电子测量与仪器学报》 北大核心 2025年第5期51-58,共8页
针对使用超宽带(ultra-wideband, UWB)技术在室内定位中受到非视距影响,导致定位精度下降问题,提出基于交点分类求解出标签的位置坐标,再融合到协方差自适应卡尔曼滤波后得出最优标签位置坐标,降低定位误差。交点分类是以基站为圆心、... 针对使用超宽带(ultra-wideband, UWB)技术在室内定位中受到非视距影响,导致定位精度下降问题,提出基于交点分类求解出标签的位置坐标,再融合到协方差自适应卡尔曼滤波后得出最优标签位置坐标,降低定位误差。交点分类是以基站为圆心、标签到基站之间的距离为半径,构成一个基站圆,以基站圆与基站圆之间的交点个数进行分类,对不同个数的交点分别采用直线相交、加权圆、加权质心等方法,求解出标签的位置坐标,记为粗定坐标,通过引入残差对卡尔曼滤波中系统过程噪声参数和测量噪声参数调整优化,再利用二段式引入遗忘因子,更新协方差矩阵,标签的粗定坐标作为协方差自适应卡尔曼滤波算法中的输入值,进而得到标签的最优位置坐标。实验结果表明,最大定位误差为14.2 cm,平均误差为7.65 cm,总体误差的方差为2.47 cm,提升了超宽带在室内定位的精度和稳定性,能够满足室内定位的需求。 展开更多
关键词 室内定位 超宽带 交点分类 噪声参数 自适应卡尔曼滤波
在线阅读 下载PDF
基于自适应卡尔曼滤波的生理电信号降噪方法
14
作者 姜言冰 姚颖闻 +1 位作者 梁兰 林林 《现代电子技术》 北大核心 2025年第10期39-44,共6页
在生理电信号的测量过程中,目标信号往往会受到各种噪声干扰,包括外界的电磁场干扰和内部的其他生理电信号干扰,其中最严重的是工频干扰。这些噪声干扰会给生理电信号的分析和处理带来极大不便,为此,提出一种基于自适应卡尔曼滤波的降... 在生理电信号的测量过程中,目标信号往往会受到各种噪声干扰,包括外界的电磁场干扰和内部的其他生理电信号干扰,其中最严重的是工频干扰。这些噪声干扰会给生理电信号的分析和处理带来极大不便,为此,提出一种基于自适应卡尔曼滤波的降噪方法,以消除生理电信号中混入的工频等噪声干扰。充分利用自适应滤波在动态权重调整方面的优势以及卡尔曼滤波在状态估计方面的准确性,精确地识别并处理目标信号和噪声。通过处理在普通实验环境中采集到的心电信号、眨眼眼电信号和肌电信号,并观察算法处理前后的时域波形和频谱,来检验自适应卡尔曼滤波器为生理电信号降噪的有效性。结果表明:所设计的自适应卡尔曼滤波可以有效消除工频(包括基频及谐波分量)等噪声干扰,使目标信号变得更加清晰干净,且不损坏目标信号的有用成分,其中在50 Hz处的频谱值平均降幅不低于49.31 dB。文中的自适应卡尔曼滤波算法仅需调整部分参数便可适用于多种不同的生理电信号,能有效滤除原始信号中混入的工频及其他噪声干扰,降噪性能稳定且计算复杂度较低,这为生理电信号的分析和处理提供了一种更为有效的解决方案。 展开更多
关键词 自适应滤波 卡尔曼滤波 生理电信号 眼电信号 工频干扰 降噪
在线阅读 下载PDF
多策略改进麻雀搜索算法优化无迹卡尔曼滤波方法
15
作者 刘建娟 李志伟 +2 位作者 姬淼鑫 吴豪然 许强伟 《科学技术与工程》 北大核心 2025年第1期227-237,共11页
针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中无迹变换(unscented transform,UT)在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(improved sparrow search algorithm,ISSA)... 针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中无迹变换(unscented transform,UT)在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(improved sparrow search algorithm,ISSA)对UT中采样点分布状态控制参数进行寻优调整的方法,从而优化Sigma点分布以提高非线性近似效果,改善滤波估计性能。同时针对传统麻雀搜索算法面临的易陷入局部最优和收敛速度慢等问题,首先利用Cubic混沌映射改善初始种群的多样性;其次在发现者阶段引入非线性自适应收敛因子,提高平衡算法在全局探索和局部开发方面的能力;同时在追随者阶段利用小波变异策略,以避免追随者盲目追随而导致算法陷入局部最优;最后利用自适应t分布的扰动能力增强算法的全局搜索能力。通过测试函数对ISSA算法进行仿真实验,结果表明ISSA算法具有更好的收敛性和求解精度,同时验证ISSA优化UKF算法后的仿真结果,表明了ISSA-UKF算法相比于UKF算法的位置均方根误差降低了52.2%,速度均方根误差降低了21.9%,证明了改进方法的有效性和可行性。 展开更多
关键词 无迹卡尔曼滤波 麻雀搜索算法 Cubic混沌映射 非线性自适应收敛因子 小波变异策略
在线阅读 下载PDF
自适应双层无迹卡尔曼滤波的车辆状态估计
16
作者 徐劲力 张光俊 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第7期29-36,共8页
针对在车辆行驶状态估计中存在估计不准确、鲁棒性较差以及系统噪声不确定等问题,提出一种将双层无迹卡尔曼滤波(DLUKF)与改进的Sage-Husa算法相结合的自适应双层无迹卡尔曼滤波算法(ADLUKF)作为车辆行驶状态的估计器,再结合三自由度汽... 针对在车辆行驶状态估计中存在估计不准确、鲁棒性较差以及系统噪声不确定等问题,提出一种将双层无迹卡尔曼滤波(DLUKF)与改进的Sage-Husa算法相结合的自适应双层无迹卡尔曼滤波算法(ADLUKF)作为车辆行驶状态的估计器,再结合三自由度汽车模型对车辆行驶的横摆角速度和质心侧偏角进行估计。通过改进的Sage-Husa滤波器对系统过程噪声和测量噪声进行动态调整,进而减少车辆行驶状态估计的误差。应用Carsim与Matlab/Simulink进行联合仿真以及实车试验数据来验证该估计器的有效性,并与无迹卡尔曼滤波(UKF)算法进行对比。结果表明:与UKF算法相比,该算法有效提高了车辆行驶的横摆角速度和质心侧偏角的估计精度和稳定性。 展开更多
关键词 自适应双层无迹卡尔曼滤波 sage-husa 参数估计 横摆角速度 质心侧偏角
在线阅读 下载PDF
基于目标优化和卡尔曼滤波的SOC估算方法
17
作者 邢展 王建宇 +2 位作者 闫晓钰 罗玉珺 涂燕 《电源技术》 北大核心 2025年第1期176-183,共8页
准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法... 准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法应用的复杂性,提出了一种适用于在线监测应用场景的基于蜣螂优化算法和自适应无迹卡尔曼滤波的SOC估计算法。将二阶Thevenin等效电路作为蓄电池的模型,利用蜣螂优化算法对该模型的关键参数进行自适应辨识,根据所辨识的参数,利用自适应无迹卡尔曼滤波算法对SOC进行估算。为了验证该算法的有效性,利用锂离子电池不同动态工况的实验数据进行了测试。实验结果表明,在初始参数设置模糊或不准确的情况下,该算法依然能够自适应地获取精度更高的SOC估计结果,具有更好的鲁棒性。 展开更多
关键词 蓄电池 SOC在线估算 蜣螂优化算法 自适应无迹卡尔曼滤波
在线阅读 下载PDF
基于动态噪声自适应无迹卡尔曼滤波的锂离子电池SOC估计 被引量:2
18
作者 尹康涌 孙磊 +4 位作者 李浩秒 郭东亮 肖鹏 王康丽 蒋凯 《储能科学与技术》 CAS CSCD 北大核心 2024年第11期4065-4077,共13页
锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池... 锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池系统的高效能量管理和优化控制至关重要。因此本文提出了一种基于动态噪声自适应无迹卡尔曼滤波的SOC估计方法。首先,通过间歇放电实验获取电池不同SOC下的开路电压,并进一步拟合得到电池的OCV-SOC曲线,接着采用二阶RC等效电路模型对锂离子电池建模,然后通过混合功率脉冲特性工况测试对电池模型参数进行辨识。由于实际应用中锂离子电池为非线性系统且SOC估计精度容易受到噪声的影响,本文在卡尔曼滤波算法的基础上采用无迹变换处理,加入噪声自适应过程,以实现噪声特性自适应估计,动态调整测量噪声与过程噪声,提高算法鲁棒性以及估计精度。最后选取DST与FUDS工况进行验证,结果表明在不同工况下动态噪声自适应无迹卡尔曼滤波算法的估计平均绝对误差、最大绝对误差以及均方根误差相较于自适应无迹卡尔曼滤波、无迹卡尔曼滤波算法均有降低,其平均绝对误差小于0.59%。本文提出的动态噪声自适应无迹卡尔曼滤波算法能够更准确地估计锂离子电池SOC。 展开更多
关键词 动态噪声自适应无迹卡尔曼滤波 荷电状态 二阶RC等效电路模型 无迹卡尔曼滤波
在线阅读 下载PDF
基于自适应扩展卡尔曼滤波的变压器顶层油温多时间尺度预测 被引量:4
19
作者 倪子瞻 罗颖婷 +2 位作者 江俊飞 张立静 盛戈皞 《电网技术》 EI CSCD 北大核心 2024年第10期4397-4405,I0129,共10页
为实现电力变压器的负荷优化调度和热故障及时预警,提高电力设备的运行可靠性,该文提出一种基于自适应扩展卡尔曼滤波算法的顶层油温短期-超短期多时间尺度预测方法。该方法将卡尔曼滤波算法和Susa热路等值模型相结合,选取顶层油温、油... 为实现电力变压器的负荷优化调度和热故障及时预警,提高电力设备的运行可靠性,该文提出一种基于自适应扩展卡尔曼滤波算法的顶层油温短期-超短期多时间尺度预测方法。该方法将卡尔曼滤波算法和Susa热路等值模型相结合,选取顶层油温、油指数和油时间常数作为状态变量,环境温度和负载电流作为输入量,通过对顶层油温估计值和观测值的比对实现油指数和油时间常数的迭代优化,以提高顶层油温多时间尺度下的预测精度。此外,该模型利用自适应噪声估计器修正噪声统计参量,以自动优化简便噪声初值设定,从而进一步提高模型的预测准确度。以2台110kV油浸式变压器为例进行分析,结果表明该方法对顶层油温的日内超短期预测、日前短期预测,相较于热路等值模型计算和扩展卡尔曼滤波算法有着更高的预测准确度。 展开更多
关键词 卡尔曼滤波 多时间尺度预测 油浸式变压器 顶层油温 噪声自适应估计
在线阅读 下载PDF
四驱车辆交互式多模型自适应无迹卡尔曼滤波路面附着系数估计 被引量:4
20
作者 邓浩楠 赵治国 +2 位作者 赵坤 李刚 于勤 《汽车工程》 EI CSCD 北大核心 2024年第8期1357-1369,共13页
路面附着系数对车辆动力学控制性能有重要影响,为准确实时估计路面附着系数,提高算法在不同路面及工况下的估计精度与收敛速度,本文针对分布式四轮驱动车辆,结合7自由度车辆动力学模型和Dugoff轮胎模型,提出了一种基于交互式多模型的自... 路面附着系数对车辆动力学控制性能有重要影响,为准确实时估计路面附着系数,提高算法在不同路面及工况下的估计精度与收敛速度,本文针对分布式四轮驱动车辆,结合7自由度车辆动力学模型和Dugoff轮胎模型,提出了一种基于交互式多模型的自适应无迹卡尔曼滤波(IMM-AUKF)路面附着系数估计方法,首先将改进的Sage-Husa噪声估计器引入到无迹卡尔曼滤波(UKF)算法中,构建了自适应无迹卡尔曼滤波(AUKF)观测器,以对测量噪声进行实时更新并保证其协方差矩阵的正定性,同时提高新观测数据的权重,并增强算法的实时跟踪精度和稳定性;然后通过选择不同的观测变量,分别构建了车辆纵向行驶工况AUKF观测器和横纵向耦合工况AUKF观测器,并利用交互式多模型(IMM)算法进行观测器模型的切换,进而实现算法在车辆不同行驶工况下路面附着系数的准确估计。高附、低附、对接以及对开等路面仿真试验及实车道路试验结果表明,所提出的IMM-AUKF算法相比于传统的UKF算法,具有更高的估计精度与更快的收敛速度,能够适应不同工况下路面附着系数的实时准确估计。 展开更多
关键词 分布式四轮驱动 路面附着系数 交互式多模型 自适应无迹卡尔曼滤波
在线阅读 下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部