A class of modified parallel combined methods of real-time numerical simulation are presented for a stiff dynamic system. By combining the parallelism across the system with the parallelism across the method, and rela...A class of modified parallel combined methods of real-time numerical simulation are presented for a stiff dynamic system. By combining the parallelism across the system with the parallelism across the method, and relaxing the dependence of stage value computation on sampling time of input function, a class of modified real-time parallel combined methods are constructed. Stiff and nonstiff subsystems are solved in parallel on a parallel computer by a parallel Rosen-brock method and a parallel RK method, respectively. Their order conditions and convergences are discussed. The numerical simulation experiments show that this class of modified algorithms can get high speed and efficiency.展开更多
Slope stability is of critical importance in the process of surface-underground mining combination. The influence of underground mining on pit slope stability was mainly discussed, and the self-stabilization of underg...Slope stability is of critical importance in the process of surface-underground mining combination. The influence of underground mining on pit slope stability was mainly discussed, and the self-stabilization of underground stopes was also studied. The random finite element method was used to analyze the probability of the rock mass stability degree of both pit slopes and underground stopes. Meanwhile, 3D elasto-plastic finite element method was used to research into the stress, strain and rock mass failure resulting from mining. The results of numerical simulation indicate that the mining of the underground test stope has certain influence on the stability of the pit slope, but the influence is not great. The safety factor of pit slope is decreased by 0.06, and the failure probability of the pit slope is increased by 1.84%. In addition, the strata yielding zone exists around the underground test stope. The results basically conform to the information coming from the field monitoring.展开更多
Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross...Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross-correlation demodulation scheme,referred to as CICCD,yielded a set of single short signals based on the prior information of AIS,after the frequency,code rate and modulation index were estimated.It demodulates the corresponding short codes according to the maximum peak of cross-correlation,which is simple and easy to implement.Numerical simulations show that the bit error rate of proposed algorithm improves by about 40% compared with existing ones,and about 3 dB beyond the standard AIS receiver.In addition,the proposed demodulation scheme shows the satisfying performance and engineering value in mixing AIS environment and can also perform well in low signal-to-noise conditions.展开更多
Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subject...Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subjected to combined blast and fragment impacts.Built upon a recently developed laboratory-scale experimental technique to generate simulated combined loading through the impact of a fragment-foam composite projectile launched from a light gas gun,the dynamic responses of fullyclamped UHMWPE plates subjected to combined loading were characterized experimentally,with corresponding deformation and failure modes compared with those measured with simulated blast loading alone.Subsequently,to explore the underlying physical mechanisms,three-dimensional(3D)numerical simulations with the method of finite elements(FE)were systematically carried out.Numerical predictions compared favorably well with experimental measurements,thus validating the feasibility of the established FE model.Relative to the case of blast loading alone,combined blast and fragment loading led to larger maximum deflections of clamped UHMWPE plates.The position of the FSP in the foam sabot affected significantly the performance of a UHMWPE target,either enhancing or decreasing its ballistic resistance.When the blast loading and fragment impact arrived simultaneously at the target,its ballistic resistance was superior to that achieved when subjected to fragment impact alone,and benefited from the accelerated movement of the target due to simultaneous blast loading.展开更多
基金This project was supported by the National Natural Science Foundation of China (19871080).
文摘A class of modified parallel combined methods of real-time numerical simulation are presented for a stiff dynamic system. By combining the parallelism across the system with the parallelism across the method, and relaxing the dependence of stage value computation on sampling time of input function, a class of modified real-time parallel combined methods are constructed. Stiff and nonstiff subsystems are solved in parallel on a parallel computer by a parallel Rosen-brock method and a parallel RK method, respectively. Their order conditions and convergences are discussed. The numerical simulation experiments show that this class of modified algorithms can get high speed and efficiency.
文摘Slope stability is of critical importance in the process of surface-underground mining combination. The influence of underground mining on pit slope stability was mainly discussed, and the self-stabilization of underground stopes was also studied. The random finite element method was used to analyze the probability of the rock mass stability degree of both pit slopes and underground stopes. Meanwhile, 3D elasto-plastic finite element method was used to research into the stress, strain and rock mass failure resulting from mining. The results of numerical simulation indicate that the mining of the underground test stope has certain influence on the stability of the pit slope, but the influence is not great. The safety factor of pit slope is decreased by 0.06, and the failure probability of the pit slope is increased by 1.84%. In addition, the strata yielding zone exists around the underground test stope. The results basically conform to the information coming from the field monitoring.
基金Project(9140C860304) supported by the National Defense Key Laboratory Foundation of China
文摘Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross-correlation demodulation scheme,referred to as CICCD,yielded a set of single short signals based on the prior information of AIS,after the frequency,code rate and modulation index were estimated.It demodulates the corresponding short codes according to the maximum peak of cross-correlation,which is simple and easy to implement.Numerical simulations show that the bit error rate of proposed algorithm improves by about 40% compared with existing ones,and about 3 dB beyond the standard AIS receiver.In addition,the proposed demodulation scheme shows the satisfying performance and engineering value in mixing AIS environment and can also perform well in low signal-to-noise conditions.
基金supported by the National Natural Science Foundation of China(Grant No.12032010,11902155 and 12072250)by the Natural Science Foundation of Jiangsu Province(Grant No.BK20190382)+2 种基金by the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Grant No.MCMS-I-0222K01)by the Fund of Prospective Layout of Scientific Research for NUAAby the Foundation for the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subjected to combined blast and fragment impacts.Built upon a recently developed laboratory-scale experimental technique to generate simulated combined loading through the impact of a fragment-foam composite projectile launched from a light gas gun,the dynamic responses of fullyclamped UHMWPE plates subjected to combined loading were characterized experimentally,with corresponding deformation and failure modes compared with those measured with simulated blast loading alone.Subsequently,to explore the underlying physical mechanisms,three-dimensional(3D)numerical simulations with the method of finite elements(FE)were systematically carried out.Numerical predictions compared favorably well with experimental measurements,thus validating the feasibility of the established FE model.Relative to the case of blast loading alone,combined blast and fragment loading led to larger maximum deflections of clamped UHMWPE plates.The position of the FSP in the foam sabot affected significantly the performance of a UHMWPE target,either enhancing or decreasing its ballistic resistance.When the blast loading and fragment impact arrived simultaneously at the target,its ballistic resistance was superior to that achieved when subjected to fragment impact alone,and benefited from the accelerated movement of the target due to simultaneous blast loading.