作物长势和田间水分预测对于农业精准管理至关重要。为准确模拟宁夏玉米产量,利用2019-2020年田间观测数据,整合SWAP(soil-water-atmosphere-plant)模型和迭代集成平滑算法(iterative ensemble smoother,IES)构建了适用于宁夏干旱地区...作物长势和田间水分预测对于农业精准管理至关重要。为准确模拟宁夏玉米产量,利用2019-2020年田间观测数据,整合SWAP(soil-water-atmosphere-plant)模型和迭代集成平滑算法(iterative ensemble smoother,IES)构建了适用于宁夏干旱地区玉米的SWAP-IES作物同化模型。比较了同化叶面积指数(leaf area index,LAI)、土壤含水率(soil water content,SW)及其组合对宁夏干旱地区玉米种植区土壤含水率模拟和产量估算的影响。研究结果表明,当同时同化LAI和SW数据时,土壤含水率模拟的决定系数(R2)显著提升,从初始时的-0.07增加到0.71。这表明,将LAI和SW数据同时纳入模型显著增强了模型预测土壤含水率的准确性。而同时同化LAI和SW相比仅同化LAI或SW能更好的模拟土壤含水率,这表明2个观测变量之间并不是孤立的,二者的耦合能更好地提升模型的模拟精度。同时同化LAI和SW时估产精度最高,RMSE降低到914.113 kg/hm^(2),显著低于其他情景。说明所构建的SWAP-IES玉米同化模型,在同时同化LAI和SW的情况下,可以准确模拟土壤含水率变化过程和玉米产量,为干旱地区农田灌溉优化和玉米估产提供参考。展开更多
为了将遥感观测到的玉米生长期间作物冠层方向反射波谱的时间序列变化信息用于区域玉米产量估算,该文将时间序列中分辨率成像光谱仪(moderate resolution imaging spectroradiometer,MODIS)数据和高空间分辨率LandsatTM遥感观测数据相结...为了将遥感观测到的玉米生长期间作物冠层方向反射波谱的时间序列变化信息用于区域玉米产量估算,该文将时间序列中分辨率成像光谱仪(moderate resolution imaging spectroradiometer,MODIS)数据和高空间分辨率LandsatTM遥感观测数据相结合,以叶面积指数(LAI)作为耦合作物生长模型(crop environment resource synthesis-Maize,CERES-Maize)和植被冠层反射率模型(scattering by arbitrarily inclined leaves,SAIL)的关键参数,提出了将耦合模型与时间序列遥感观测数据同化进行区域玉米产量估算的方案。该文选择吉林省榆树市为研究区,采用MODIS和LandsatTM2种尺度数据集,利用SCE-UA(shuffled complex evolution method developed at the University of Arizona)算法分别进行玉米产量同化估产研究,得到玉米单产空间分布的估计结果,结合遥感估算的种植面积求算榆树市玉米总产量。结果表明,与玉米统计总产量相比,2007、2008和2009年遥感数据同化估算的总产量误差分别为9.15%、14.99%和8.97%;与仅利用CERES-Maize模型模拟得到的产量误差相比,3a间遥感估算总产量的误差分别减小了7.49%、1.21%和5.23%,且采用MODIS和TM遥感数据估算的玉米产量表现了其空间差异性。利用榆树市3a间玉米产量的明显差异,分析了时序遥感数据对作物长势和产量变化信息的表达能力,同年份内时序归一化差值植被指数越大,对应的玉米产量越高;年际间遥感观测反射率的差异通过数据同化方法能够反映年际间玉米产量差的变化。该文提出的玉米估产方案为将来进一步结合多源遥感数据、植被冠层反射率模型与作物生长模型进行区域玉米估产研究提供了参考。展开更多
基于观测数据和作物模型相同化的田块尺度作物生长监测,对于农田精准管理具有重要意义。为构建能准确模拟旱区春小麦长势和产量的同化模拟模型,该研究利用SWAP(soil-water-atmosphere-plant)模型和迭代集合平滑器算法(iterative ensembl...基于观测数据和作物模型相同化的田块尺度作物生长监测,对于农田精准管理具有重要意义。为构建能准确模拟旱区春小麦长势和产量的同化模拟模型,该研究利用SWAP(soil-water-atmosphere-plant)模型和迭代集合平滑器算法(iterative ensemble smoother,IES),构建了适合旱区春小麦的SWAP-IES同化模拟系统,并利用2019—2020年田间观测试验数据,评估了同化叶面积指数(leaf area index,LAI)、土壤水分(soil water content,SW)及其组合在旱区春小麦生长模拟和估产中的作用。结果表明,相较于无同化情景,在吸收6次土壤水分观测数据后,模型对土壤水分模拟的R^(2)从0.48提升到0.87。同化LAI时,各水分胁迫处理下LAI的模拟精度均最高,R^(2)从无同化的0.35~0.62提升到0.76~0.96。同化LAI+SW时,各处理对生物量模拟的精度均最高,R^(2)从无同化的0.40~0.67提升到0.73~0.96。轻度水分胁迫处理(T4~T5)下,仅同化LAI即可达到较好的估产效果,相对误差为4.05%~9.17%,而在中度或重度水分胁迫处理(T1~T3)下,准确的产量估算需同时吸收LAI和SW,相对误差为3.87%~8.38%。开花期和拔节期的观测数据对提高SWAP-IES系统估产精度的作用最大,同时吸收开花期和拔节期LAI+SW观测数据时估产的R^(2)可从无同化的0.45提高到0.79。说明所构建的SWAP-IES同化模拟系统,在融入开花期和拔节期等关键生育期的观测数据后能有效模拟不同水分处理下春小麦生长和产量形成过程,可为田块尺度下旱区春小麦精准监测提供技术参考。展开更多
为了评估同化时间序列叶面积指数(leaf area index,LAI)和蒸散发(evapotranspiration,ET)产品对冬小麦产量估测的有效性和适用性,该文选择陕西省关中平原冬小麦为研究对象,以SWAP为作物生长动态模型,利用冬小麦关键生育期的遥感观测和S...为了评估同化时间序列叶面积指数(leaf area index,LAI)和蒸散发(evapotranspiration,ET)产品对冬小麦产量估测的有效性和适用性,该文选择陕西省关中平原冬小麦为研究对象,以SWAP为作物生长动态模型,利用冬小麦关键生育期的遥感观测和SWAP模拟LAI、ET趋势变化信息构建代价函数,以SCE-UA作为优化算法最小化代价函数,重新初始化SWAP模型中的出苗日期和灌溉量2个参数。重点比较了基于向量夹角和一阶差分2种代价函数的冬小麦单产估测精度。结果表明,同化MODIS LAI和ET后,冬小麦产量的估测精度比未同化精度(r=0.57,RMSE=1 192 kg/hm2)有显著提高,并且基于向量夹角代价函数法同化策略的单产估测精度(r=0.75,RMSE=494 kg/hm2)高于一阶差分代价函数法(r=0.73,RMSE=667 kg/hm2)的估测精度。该方法为其他区域的水分胁迫模式下遥感与作物模型双变量数据同化提供了参考。展开更多
文摘作物长势和田间水分预测对于农业精准管理至关重要。为准确模拟宁夏玉米产量,利用2019-2020年田间观测数据,整合SWAP(soil-water-atmosphere-plant)模型和迭代集成平滑算法(iterative ensemble smoother,IES)构建了适用于宁夏干旱地区玉米的SWAP-IES作物同化模型。比较了同化叶面积指数(leaf area index,LAI)、土壤含水率(soil water content,SW)及其组合对宁夏干旱地区玉米种植区土壤含水率模拟和产量估算的影响。研究结果表明,当同时同化LAI和SW数据时,土壤含水率模拟的决定系数(R2)显著提升,从初始时的-0.07增加到0.71。这表明,将LAI和SW数据同时纳入模型显著增强了模型预测土壤含水率的准确性。而同时同化LAI和SW相比仅同化LAI或SW能更好的模拟土壤含水率,这表明2个观测变量之间并不是孤立的,二者的耦合能更好地提升模型的模拟精度。同时同化LAI和SW时估产精度最高,RMSE降低到914.113 kg/hm^(2),显著低于其他情景。说明所构建的SWAP-IES玉米同化模型,在同时同化LAI和SW的情况下,可以准确模拟土壤含水率变化过程和玉米产量,为干旱地区农田灌溉优化和玉米估产提供参考。
文摘为了将遥感观测到的玉米生长期间作物冠层方向反射波谱的时间序列变化信息用于区域玉米产量估算,该文将时间序列中分辨率成像光谱仪(moderate resolution imaging spectroradiometer,MODIS)数据和高空间分辨率LandsatTM遥感观测数据相结合,以叶面积指数(LAI)作为耦合作物生长模型(crop environment resource synthesis-Maize,CERES-Maize)和植被冠层反射率模型(scattering by arbitrarily inclined leaves,SAIL)的关键参数,提出了将耦合模型与时间序列遥感观测数据同化进行区域玉米产量估算的方案。该文选择吉林省榆树市为研究区,采用MODIS和LandsatTM2种尺度数据集,利用SCE-UA(shuffled complex evolution method developed at the University of Arizona)算法分别进行玉米产量同化估产研究,得到玉米单产空间分布的估计结果,结合遥感估算的种植面积求算榆树市玉米总产量。结果表明,与玉米统计总产量相比,2007、2008和2009年遥感数据同化估算的总产量误差分别为9.15%、14.99%和8.97%;与仅利用CERES-Maize模型模拟得到的产量误差相比,3a间遥感估算总产量的误差分别减小了7.49%、1.21%和5.23%,且采用MODIS和TM遥感数据估算的玉米产量表现了其空间差异性。利用榆树市3a间玉米产量的明显差异,分析了时序遥感数据对作物长势和产量变化信息的表达能力,同年份内时序归一化差值植被指数越大,对应的玉米产量越高;年际间遥感观测反射率的差异通过数据同化方法能够反映年际间玉米产量差的变化。该文提出的玉米估产方案为将来进一步结合多源遥感数据、植被冠层反射率模型与作物生长模型进行区域玉米估产研究提供了参考。
文摘基于观测数据和作物模型相同化的田块尺度作物生长监测,对于农田精准管理具有重要意义。为构建能准确模拟旱区春小麦长势和产量的同化模拟模型,该研究利用SWAP(soil-water-atmosphere-plant)模型和迭代集合平滑器算法(iterative ensemble smoother,IES),构建了适合旱区春小麦的SWAP-IES同化模拟系统,并利用2019—2020年田间观测试验数据,评估了同化叶面积指数(leaf area index,LAI)、土壤水分(soil water content,SW)及其组合在旱区春小麦生长模拟和估产中的作用。结果表明,相较于无同化情景,在吸收6次土壤水分观测数据后,模型对土壤水分模拟的R^(2)从0.48提升到0.87。同化LAI时,各水分胁迫处理下LAI的模拟精度均最高,R^(2)从无同化的0.35~0.62提升到0.76~0.96。同化LAI+SW时,各处理对生物量模拟的精度均最高,R^(2)从无同化的0.40~0.67提升到0.73~0.96。轻度水分胁迫处理(T4~T5)下,仅同化LAI即可达到较好的估产效果,相对误差为4.05%~9.17%,而在中度或重度水分胁迫处理(T1~T3)下,准确的产量估算需同时吸收LAI和SW,相对误差为3.87%~8.38%。开花期和拔节期的观测数据对提高SWAP-IES系统估产精度的作用最大,同时吸收开花期和拔节期LAI+SW观测数据时估产的R^(2)可从无同化的0.45提高到0.79。说明所构建的SWAP-IES同化模拟系统,在融入开花期和拔节期等关键生育期的观测数据后能有效模拟不同水分处理下春小麦生长和产量形成过程,可为田块尺度下旱区春小麦精准监测提供技术参考。