Surfactant-based oil recovery processes are employed to lower the interfacial tension in immiscible displacement processes,change the wettability of rock to a more water-wet system and emulsify the oil to displace it ...Surfactant-based oil recovery processes are employed to lower the interfacial tension in immiscible displacement processes,change the wettability of rock to a more water-wet system and emulsify the oil to displace it in subsurface porous media.Furthermore,these phenomena can reduce the capillary pressure and enhance spontaneous imbibition.The key factors affecting such immiscible displacement process are temperature,salinity and p H of the fluids,surfactant concentration and adsorption.Therefore,before any surfactant flooding process is applied,extensive studies of fluid-fluid and rock-fluid interactions are needed.The use of other chemicals along with surfactants in chemical enhanced oil recovery(c EOR)processes have been widely considered to exploit the synergy of individual chemicals and complement the weakness arises from each of them during immiscible displacement of fluids in porous media.Therefore,such combinations of chemicals lead to alkaline-surfactant(AS),surfactantpolymer(SP),alkaline-surfactant-polymer(ASP),and nanoparticle-surfactant(NS)flooding processes,among others.In this review study,we categorised the role and displacement mechanisms of surfactants and discussed the key factors to be considered for analysing the fluid displacement in porous media.展开更多
Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant...Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.展开更多
While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application...While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application of surfactants in different LIBs extinguishing agents,particularly in terms of patented technologies.The aim of this review paper is to provide an overview of the technological progress of LIBs and LIBs extinguishing agents in terms of patents in Korea,Japan,Europe,the United States,China,etc.The initial part of this review paper is sort out LIBs technology development in different regions.In addition,to compare LIBs extinguishing agent progress and challenges of liquid,solid,combination of multiple,and microencapsulated.The subsequent section of this review focuses on an in-depth analysis dedicated to the efficiency and challenges faced by the surfactants corresponding design principles of LIBs extinguishing agents,such as nonionic and anionic surfactants.A total of 451,760 LIBs-related patent and 20 LIBs-fire-extinguishing agent-related patent were included in the analyses.The extinguishing effect,cooling performance,and anti-recombustion on different agents have been highlighted.After a comprehensive comparison of these agents,this review suggests that temperature-sensitive hydrogel extinguishing agent is ideal for the effective control of LIBs fire.The progress and challenges of surfactants have been extensively examined,focusing on key factors such as surface activity,thermal stability,foaming properties,environmental friendliness,and electrical conductivity.Moreover,it is crucial to emphasize that the selection of a suitable surfactant must align with the extinguishing strategy of the extinguishing agent for optimal firefighting effectiveness.展开更多
Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and ...Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and synthesized a novel,highly efficient,water-soluble cationic collector,N-dodecylisopropanolamine(NDIA),for use in the bastnaesite-calcite flotation process.Density functional theory(DFT)calculations identified the amine nitrogen atom in NDIA as the site most susceptible to electrophilic attack and electron loss.By introducing an OH group into the traditional collector dodecylamine(DDA)structure,NDIA provided additional adsorption sites,enabling synergistic adsorption on the surface of bastnaesite,thereby significantly enhancing both the floatability and selectivity of these minerals.The recovery of bastnaesite was 76.02%,while the calcite was 1.26%.The NDIA markedly affected the zeta potential of bastnaesite,while its impact on calcite was relatively minor.Detailed Fourier-transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS)results elucidated that the―NH―and―OH groups in NDIA anchored onto the bastnaesite surface through robust electrostatic and hydrogen bonding interactions,thereby enhancing bastnaesite's affinity for NDIA.Furthermore,in situ atomic force microscopy(AFM)provided conclusive evidence of NDIA aggregation on the bastnaesite surface,improving contact angle and hydrophobicity,and significantly boosting the flotation recovery of bastnaesite.展开更多
An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium brom...An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.展开更多
Thermal recovery techniques for producing oil sands have substantial environmental impacts.Surfactants can efficiently improve thermal bitumen recovery and reduce the required amount of steam.Such a technique requires...Thermal recovery techniques for producing oil sands have substantial environmental impacts.Surfactants can efficiently improve thermal bitumen recovery and reduce the required amount of steam.Such a technique requires solid knowledge about the interaction mechanism between surfactants,bitumen,water,and rock at the nanoscale level.In particular,oil sands ores have extremely complex mineralogy as they contain many clay minerals(montmorillonite,illite,kaolinite).In this study,molecular dynamics simulation is carried out to elucidate the unclear mechanisms of clay minerals contributing to the bitumen recovery under a steam-anionic surfactant co-injection process.We found that the clay content significantly influenced an oil detachment process from hydrophobic quartz surfaces.Results reveal that the presence of montmorillonite,illite,and the siloxane surface of kaolinite in nanopores can enhance the oil detachment process from the hydrophobic surfaces because surfactant molecules have a stronger tendency to interact with bitumen and quartz.Conversely,the gibbsite surfaces of kaolinite curb the oil detachment process.Through interaction energy analysis,the siloxane surfaces of kaolinite result in the most straightforward oil detachment process.In addition,we found that the clay type presented in nanopores affected the wettability of the quartz surfaces.The quartz surfaces associated with the gibbsite surfaces of kaolinite show the strongest hydrophilicity.By comparing previous experimental findings with the results of molecular dynamics(MD)simulations,we observed consistent wetting characteristics.This alignment serves to validate the reliability of the simulation outcomes.The outcome of this paper makes up for the lack of knowledge of a surfactant-assisted bitumen recovery process and provides insights for further in-situ bitumen production engineering designs.展开更多
Viscoelastic surfactants(VES)are often used as viscous diverters in acidizing stimulation to prolong the acid consumption time and maximize zonal coverage of the acid for improving well productivity.However,the ceilin...Viscoelastic surfactants(VES)are often used as viscous diverters in acidizing stimulation to prolong the acid consumption time and maximize zonal coverage of the acid for improving well productivity.However,the ceiling temperature of commercial VES cannot exceed 120℃in practical use because of the poor thermal stability and fragile molecular structure,hindering their implementation in hightemperature oil reservoirs,i.e.,≥150℃.Here we synthesized a novel C22-tailed diamine,N-erucaminopropyl-N,N-dimethylamine(EDPA),and examined comparatively its rheological behavior,assemblies morphology and molecular stability in 20 wt%HCl with a commercial VES,erucyl dimethyl amidopropyl betaine(EDAB).The feasibility of EDPA for acidizing stimulation was assessed by acid etching of carbonate rock with its HCl solution at 150℃.Rheological results showed that the 2.5 wt%EDPA—20 wt%HCl solution maintains stable viscosity of 90 m Pa s at 150℃for 60 min,while that of 2.0 wt%EDAB HCl solution is just 1 m Pa s under identical conditions.1H NMR spectra and cryo-TEM observations revealed that the chemical structure and self-assembled architectures of EDPA remained intact in such context,but the EDAB suffered from degradation due to the hydrolysis of the amide group,accounting for the poor heat-resistance and acid-tolerance.The reaction rate of 2.5 wt%EDPA HCl solution with carbonate rock was one order of magnitude lower than that of 20 wt%HCl solution at 150℃,underpinning the potential of EDPA to be used in the high-temperature reservoirs acidizing.This work improved the thermal tolerance of VES in highly concentrated HCl solution,paving a feasible way for the acidization of high-temperature reservoir environments(~150℃).展开更多
The Brownian dynamics (BD) simulation of a dilute surfactant solution is conducted in a steady shear flow. The rodlike micelle is assumed as a rigid rod composed of lined-up beads. A novel intercluster potential mod...The Brownian dynamics (BD) simulation of a dilute surfactant solution is conducted in a steady shear flow. The rodlike micelle is assumed as a rigid rod composed of lined-up beads. A novel intercluster potential model is introduced for describing the interactions between, micelles. In the model, the Lennard-Jones and the soft-sphere potentials are used as inter-bead potentials for end-end and interior-interior beads, respectively. The micelles are combined at their ends to form a network structure at lower shear rates and are disconnected to become more and more parallel to the shear flow direction with increasing shear rate. The change of micellar microstructures with the variation of the shear rate results in shear thinning characteristics of the computed shear viscosities and first normal stress difference coefficients. The effects of surfactant solution concentration on the micellar structures and rheological properties are also investigated. Results show that the shear viscosities and the first normal stress difference coefficients increase with increasing the viscosity of the surfactant solution.展开更多
To investigate the influence of surface characteristics of particles on electrorheological (ER) fluids, water free complex strontium titanate particles were synthesized through the sol gel technique and different ma...To investigate the influence of surface characteristics of particles on electrorheological (ER) fluids, water free complex strontium titanate particles were synthesized through the sol gel technique and different mass fraction of the surfactant was doped in particles and dispersed in silicon oil. The test shows that surface characteristics of particles have great influence on the behavior of ER fluids. Surface tension, surface polarity and interfacial polarization are strongly related to the surface status of the dispersed particles.展开更多
Ameliorating the problem of low leaching efficiency,long leaching period,and high agent consumption should be studied to efficiently exploit ion-absorbed rare earth ore resources.In this study,the surfactant sodium do...Ameliorating the problem of low leaching efficiency,long leaching period,and high agent consumption should be studied to efficiently exploit ion-absorbed rare earth ore resources.In this study,the surfactant sodium dodecyl sulfate(SDS) is used to enhance the leaching effect of an ion-absorbed rare earth ore by ameliorating the seepage effect for the first time.The effects of surfactant concentration,leaching agent dosage,solution flow velocity,and solution pH on the leaching rate were explored,and the mechanism of SDS was discussed.Under the optimum conditions,the addition of a small amount of SDS(mass fraction0.04%) can increase the leaching rate by about 5%,shorten the leaching period,and reduce the consumption of the leaching agent.SDS significantly ameliorates the seepage effect of the ore body by reducing the surface tension of the leaching agent and ameliorating the wettability of the mineral surface.This effect is the main factor that improves the leaching efficiency.DFT(density functional theory) calculation results show that SDS can react with rare earth ions,which reduces the adsorption strength on clay mineral surfaces.Hence,rare earth ions are easily exchanged by ammonium ions,and mass transfer is enhanced.展开更多
Reservoir wettability plays an important role in various oil recovery processes.The origin and evolution of reservoir wettability were critically reviewed to better understand the complexity of wettability due to inte...Reservoir wettability plays an important role in various oil recovery processes.The origin and evolution of reservoir wettability were critically reviewed to better understand the complexity of wettability due to interactions in crude oil-brine-rock system,with introduction of different wetting states and their influence on fluid distribution in pore spaces.The effect of wettability on oil recovery of waterflooding was then summarized from past and recent research to emphasize the importance of wettability in oil displacement by brine.The mechanism of wettability alteration by different surfactants in both carbonate and sandstone reservoirs was analyzed,concerning their distinct surface chemistry,and different interaction patterns of surfactants with components on rock surface.Other concerns such as the combined effect of wettability alteration and interfacial tension (IFT) reduction on the imbibition process was also taken into account.Generally,surfactant induced wettability alteration for enhanced oil recovery is still in the stage of laboratory investigation.The successful application of this technique relies on a comprehensive survey of target reservoir conditions,and could be expected especially in low permeability fractured reservoirs and forced imbibition process.展开更多
The influences of an anionic-nonionic composite surfactant and petroleum sulfonate, used in surfactant-polymer flooding in Shengli Gudong oilfield, East China, on the interfacial properties of Gudong crude model oil a...The influences of an anionic-nonionic composite surfactant and petroleum sulfonate, used in surfactant-polymer flooding in Shengli Gudong oilfield, East China, on the interfacial properties of Gudong crude model oil and synthetic formation water was studied by measuring interfacial tension, interfacial viscoelasticity and Zeta potential. The in? uence of the surfactants on the stability of Gudong water-in-oil (W/O) and oil-in-water (O/W) emulsions was evaluated by separating water from the W/O emulsion and residual oil in the aqueous phase of the O/W emulsion respectively. The results showed that the two kinds of surfactants, namely anionic-nonionic composite surfactant and petroleum sulfonate, are both able to decrease the interfacial tension between the oil phase and the aqueous phase and increase the surface potential of the oil droplets dispersed in the O/W emulsion, which can enhance the stability of the W/O and O/W crude oil emulsions. Compared with petroleum sulfonate, the anionic-nonionic composite surfactant is more interfacially active and able to enhance the strength of the interfacial film between oil and water, hence enhance the stability of the W/O and O/W emulsions more effectively.展开更多
A significant fraction of the conventional oil reserves globally is in carbonate formations which contain a substantial amount of residual oil. Since primary and secondary recovery methods fail to yield above 20%-40%o...A significant fraction of the conventional oil reserves globally is in carbonate formations which contain a substantial amount of residual oil. Since primary and secondary recovery methods fail to yield above 20%-40%of original oil in place from these reserves, the need for enhanced oil recovery(EOR) techniques for incremental oil recovery has become imperative. With the challenges presented by the highly heterogeneous carbonate rocks,evaluation of tertiary-stage recovery techniques including chemical EOR(c EOR) has been a high priority for researchers and oil producers. In this review, the latest developments in the surfactant-based c EOR techniques applied in carbonate formations are discussed, contemplating the future direction of existing methodologies. In connection with this, the characteristics of heterogeneous carbonate reservoirs are outlined. Detailed discussion on surfactant-led oil recovery mechanisms and related processes, such as wettability alteration, interfacial tension reduction, microemulsion phase behavior, surfactant adsorption and mitigation, and foams and their applications is presented. Laboratory experiments, as well as field study data obtained using several surfactants, are also included.This extensive discussion on the subject aims to help researchers and professionals in the field to understand the current situation and plan future enterprises accordingly.展开更多
Surfactants for enhanced oil recovery are important to study due to their special characteristics like foam generation,lowering interfacial tension between oleic and aqueous phases,and wettability alteration of reserv...Surfactants for enhanced oil recovery are important to study due to their special characteristics like foam generation,lowering interfacial tension between oleic and aqueous phases,and wettability alteration of reservoir rock surfaces.Foam is a good mobility control agent in enhanced oil recovery for improving the mobility ratio.In the present work,the foaming behavior of three nonionic ethoxylated surfactants,namely Tergitol 15-S-7,Tergitol 15-S-9,and Tergitol 15-S-12,was studied experimentally.Among the surfactants,Tergitol 15-S-12 shows the highest foamability.The effect of Na Cl concentration and synthetic seawater on foaming behavior of the surfactants was investigated by the test-tube shaking method.The critical micelle concentrations of aqueous solutions of the different nonionic surfactants were measured at 300 K.It was found that the critical micelle concentrations of all surfactants also increased with increasing ethylene oxide number.Dynamic light scattering experiments were performed to investigate the micelle sizes of the surfactants at their respective critical micelle concentrations.Core flooding experiments were carried out in sand packs using the surfactant solutions.It was found tha t22% additional oil was recovered in the case of all the surfactants over secondary water flooding.Tergitol 15-S-12exhibited the maximum additional oil recovery which is more than 26%after water injection.展开更多
In the present work we studied the induction periods of hydrate formation of natural gas in pure water, aqueous solutions of surfactants, and in the presence of surfactant together with aluminum oxide nanopowder, the ...In the present work we studied the induction periods of hydrate formation of natural gas in pure water, aqueous solutions of surfactants, and in the presence of surfactant together with aluminum oxide nanopowder, the activity of which as hydrate formation inducer was studied previously. Sodium dodecyl sulfate(SDS) or neonol AF-9-12 were used as the surfactants. It was demonstrated that the addition of either surfactants or aluminum oxide powder under our experimental conditions causes a decrease in the induction period of hydrate formation from;05 min for pure water to 30–35 min for water with additives. In the case of the simultaneous presence of surfactants and aluminum oxide powder in the system, induction period decreased to;0 min. So, the synergistic effect of the combination of surfactant and oxide powder on gas hydrate nucleation was demonstrated. Possible reasons of this effect have been discussed.展开更多
Acceleration of gas hydrate formation is important in preventing coal and gas outbursts and is based on a hydration mechanism. It becomes therefore necessary to investigate the effect of surfactants, acting as acceler...Acceleration of gas hydrate formation is important in preventing coal and gas outbursts and is based on a hydration mechanism. It becomes therefore necessary to investigate the effect of surfactants, acting as accelerants for hydrate formation, on induction time. We experimented with three types of a Tween solution with equal concentrations of 0.001 mol/L (T40, T40/T80 (1:1), T40/T80 (4:1)). By means of visual experimental equipment, developed by us, we measured generalized induction time using a Direct Observation Method. The experimental data were analyzed combined with a mass transfer model and a hydrate crystal nuclei growth model. Our major conclusions are as follows: 1) solubilization of surfactants produces supersaturated gas molecules, which promotes the mass transfer from a bulk phase to hydrates and provides the driving force for the complexation between host molecules (water) and guest molecules in a gas hydrate formation process; 2) when the solution of the surfactant concentration exceeds the critical micelle concentration (CMC), the surfactant in an aqueous solution will transform to micelles. Most of the gas molecules are bound to form clusters with water molecules, which promotes the formation of crystal nuclei of gas hydrates; 3) the surfactant T40 proved to have more notable effects on the promotion of crystal nuclei formation and on shortening the induction time, compared with T40/T80 (1:1) and T40/T80 (4:1).展开更多
Naturally fractured carbonate reservoirs have very low oil recovery efficiency owing to their wettability and tightness of matrix.However,smart water can enhance oil recovery by changing the wettability of the carbona...Naturally fractured carbonate reservoirs have very low oil recovery efficiency owing to their wettability and tightness of matrix.However,smart water can enhance oil recovery by changing the wettability of the carbonate rock surface from oilwet to water-wet,and the addition of surfactants can also change surface wettability.In the present study,the effects of a solution of modified seawater with some surfactants,namely C12 TAB,SDS,and TritonX-100(TX-100),on the wettability of carbonate rock were investigated through contact angle measurements.Oil recovery was studied using spontaneous imbibition tests at 25,70,and 90°C,followed by thermal gravity analysis to measure the amount of adsorbed material on the carbonate surface.The results indicated that Ca2+,Mg2+,and SO42-.ions may alter the carbonate rock wettability from oil-wet to water-wet,with further water wettability obtained at higher concentrations of the ions in modified seawater.Removal of NaCl from the imbibing fluid resulted in a reduced contact angle and significantly enhanced oil recovery.Low oil recoveries were obtained with modified seawater at 25 and 70°C,but once the temperature was increased to 90°C,the oil recovery in the spontaneous imbibition experiment increased dramatically.Application of smart water with C12 TAB surfactant at 0.1 wt%changed the contact angle from 161°to 52°and enhanced oil recovery to 72%,while the presence of the anionic surfactant SDS at 0.1 wt%in the smart water increased oil recovery to 64.5%.The TGA analysis results indicated that the adsorbed materials on the carbonate surface were minimal for the solution containing seawater with C12 TAB at 0.1 wt%(SW+CTAB(0.1 wt%)).Based on the experimental results,a mechanism was proposed for wettability alteration of carbonate rocks using smart water with SDS and C12 TAB surfactants.展开更多
In recent years,production from tight oil reservoirs has increasingly supplemented production from conventional oil resources.Oil-wet formations account for a considerable proportion of tight oil reservoirs.Surfactant...In recent years,production from tight oil reservoirs has increasingly supplemented production from conventional oil resources.Oil-wet formations account for a considerable proportion of tight oil reservoirs.Surfactant can change wettability and reduce interfacial tension,thus resulting in a better oil recovery.In this manuscript,a nonionic surfactant was introduced for tight oil-wet reservoirs.The oil recovery in the oil-wet sandstone due to spontaneous imbibition was 8.59%lower than that of the waterwet sandstone due to surfactant.The 0.1%surfactant solution corresponded to the highest imbibition recovery rate of 27.02%from the oil-wet sample.With the surfactant treatment,the treated core quickly changed from weakly oil-wet to weakly water-wet.The capillary force acted as the driving force and promoted imbibition.The optimal surfactant adsorption quantity in the oil-wet sandstone was observed in the sample at concentrations ranging from 0.1%to 0.3%,which also corresponded to the highest oil recovery.Analysis of the inverse Bond number NB-1 suggested that the driving force was gravity for brine imbibition in the oil-wet cores and that it was capillary force for surfactant imbibition in the oil-wet cores.When the surfactant concentration was lower than the critical micelle concentration,the surfactant concentration was negatively correlated with the inverse Bond number and positively correlated with the oil recovery rate.When the surfactant concentration was higher than the critical micelle concentration,the oil recovery increased with a smaller interfacial tension.Nuclear magnetic resonance suggested that the movable pore and pore throat size in the oil-wet sample decreased from 0.363 mm in the untreated rock to 0.326 mm with the surfactant treatment,which indicated that the surfactant improved the flow capacity of the oil.The findings of this study can help to better understand the adsorption impact of surfactants on the characteristics of the oil/water and solid/liquid interfaces.The imbibition mechanism in oil-wet tight sandstone reservoirs was further revealed.These systematic approaches help to select appropriate surfactants for better recovery in oil-wet tight sandstone reservoirs through imbibition.展开更多
Spontaneous imbibition is an important phenomenon in tight reservoirs.The existence of a large number of fractures and micro-nano pores is the key factor affecting the spontaneous imbibition of tight reservoirs.In thi...Spontaneous imbibition is an important phenomenon in tight reservoirs.The existence of a large number of fractures and micro-nano pores is the key factor affecting the spontaneous imbibition of tight reservoirs.In this study,based on high-pressure mercury injection and nuclear magnetic resonance experiments,the pore distribution of tight sandstone is described.The influence of fractures,core porosity and permeability,and surfactants on the spontaneous imbibition of tight sandstone are studied by physical fracturing,interfacial tension test,wettability test and imbibition experiments.The results show that:the pore radius of tight sandstone is concentrated in 0.01-1 mm.Fractures can effectively reduce the oil drop adsorption on the core surface,enhancing the imbibition recovery of the tight sandstone with an increase of about 10%.As the number of fractures increases,the number of oil droplets adsorbed on the core surface decrease and the imbibition rate increases.The imbibition recovery increases with the increase in pore connectivity,while the imbibition rate increases with the increases in core porosity and permeability.The surfactant can improve the core water wettability and reduce the oilwater interfacial tension,reducing the adsorption of oil droplets on the core surface,and improving the core imbibition recovery with an increase of about 15%.In a word,the existence of fractures and surfactants can enhance the pore connectivity of the reservoir,reduce the adsorption of oil droplets on the core surface,and improve the imbibition rate and recovery rate of the tight oil reservoir.展开更多
Hydraulic fracturing technology can significantly increase oil production from tight oil formations, but performance data show that production declines rapidly. In the long term, it is necessary to increase the develo...Hydraulic fracturing technology can significantly increase oil production from tight oil formations, but performance data show that production declines rapidly. In the long term, it is necessary to increase the development efficiency of block matrix, surfactant-aided imbibition is a potential way. The current work aimed to explain comprehensively how surfactants can enhance the imbibition rate. Laboratory experiments were performed to investigate the effects of wettability, interfacial tension(IFT), and relative permeability as the key parameters underlying surfactant solution imbibition. Two different types of surfactants, sodium dodecyl sulfate and polyethylene glycol octylphenol ether, at varied concentrations were tested on reservoir rocks. Experimental results showed that the oil recovery rate increased with increased wettability alteration and IFT and decreased residual oil saturation. A mechanistic simulator developed in previous studies was used to perform parametric analysis after successful laboratory-scale validation. Results were proven by parametric studies. This study,which examined the mechanism and factors influencing surfactant solution imbibition, can improve understanding of surfactant-aided imbibition and surfactant screening.展开更多
基金the Faculty of Engineering University of Khartoum,Sudan,for the financial support of his studies at the University of Aberdeen
文摘Surfactant-based oil recovery processes are employed to lower the interfacial tension in immiscible displacement processes,change the wettability of rock to a more water-wet system and emulsify the oil to displace it in subsurface porous media.Furthermore,these phenomena can reduce the capillary pressure and enhance spontaneous imbibition.The key factors affecting such immiscible displacement process are temperature,salinity and p H of the fluids,surfactant concentration and adsorption.Therefore,before any surfactant flooding process is applied,extensive studies of fluid-fluid and rock-fluid interactions are needed.The use of other chemicals along with surfactants in chemical enhanced oil recovery(c EOR)processes have been widely considered to exploit the synergy of individual chemicals and complement the weakness arises from each of them during immiscible displacement of fluids in porous media.Therefore,such combinations of chemicals lead to alkaline-surfactant(AS),surfactantpolymer(SP),alkaline-surfactant-polymer(ASP),and nanoparticle-surfactant(NS)flooding processes,among others.In this review study,we categorised the role and displacement mechanisms of surfactants and discussed the key factors to be considered for analysing the fluid displacement in porous media.
基金financially supported by National Natural Science Foundation of China(No.22302229)Beijing Municipal Excellent Talent Training Funds Youth Advanced Individual Project(No.2018000020124G163)。
文摘Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.
基金supported by the National Key Research and Development Program of China (No.2017YFC0804700)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (No.KFJJ23-23M)。
文摘While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application of surfactants in different LIBs extinguishing agents,particularly in terms of patented technologies.The aim of this review paper is to provide an overview of the technological progress of LIBs and LIBs extinguishing agents in terms of patents in Korea,Japan,Europe,the United States,China,etc.The initial part of this review paper is sort out LIBs technology development in different regions.In addition,to compare LIBs extinguishing agent progress and challenges of liquid,solid,combination of multiple,and microencapsulated.The subsequent section of this review focuses on an in-depth analysis dedicated to the efficiency and challenges faced by the surfactants corresponding design principles of LIBs extinguishing agents,such as nonionic and anionic surfactants.A total of 451,760 LIBs-related patent and 20 LIBs-fire-extinguishing agent-related patent were included in the analyses.The extinguishing effect,cooling performance,and anti-recombustion on different agents have been highlighted.After a comprehensive comparison of these agents,this review suggests that temperature-sensitive hydrogel extinguishing agent is ideal for the effective control of LIBs fire.The progress and challenges of surfactants have been extensively examined,focusing on key factors such as surface activity,thermal stability,foaming properties,environmental friendliness,and electrical conductivity.Moreover,it is crucial to emphasize that the selection of a suitable surfactant must align with the extinguishing strategy of the extinguishing agent for optimal firefighting effectiveness.
基金supported by the the National Key R&D Program of China(No.2021YFC2900800)National Natural Science Foundation of China(Nos.52425406,51874247,51922091,and 52204285)+4 种基金the Open Research Fund of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF2001)Science and Technology Major Project of Ordos City-Iconic Innovation Team and “Rejuvenating Inner Mongolia through Science and Technology”(No.202204/2023)Yueqi Outstanding Scholar Award of CUMTB(No.202022)Funded by Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-05)Fundamental Research Funds for the Central Universities(Ph.D.Top Innovative Talents Fund of CUMT BBJ2024048)。
文摘Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and synthesized a novel,highly efficient,water-soluble cationic collector,N-dodecylisopropanolamine(NDIA),for use in the bastnaesite-calcite flotation process.Density functional theory(DFT)calculations identified the amine nitrogen atom in NDIA as the site most susceptible to electrophilic attack and electron loss.By introducing an OH group into the traditional collector dodecylamine(DDA)structure,NDIA provided additional adsorption sites,enabling synergistic adsorption on the surface of bastnaesite,thereby significantly enhancing both the floatability and selectivity of these minerals.The recovery of bastnaesite was 76.02%,while the calcite was 1.26%.The NDIA markedly affected the zeta potential of bastnaesite,while its impact on calcite was relatively minor.Detailed Fourier-transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS)results elucidated that the―NH―and―OH groups in NDIA anchored onto the bastnaesite surface through robust electrostatic and hydrogen bonding interactions,thereby enhancing bastnaesite's affinity for NDIA.Furthermore,in situ atomic force microscopy(AFM)provided conclusive evidence of NDIA aggregation on the bastnaesite surface,improving contact angle and hydrophobicity,and significantly boosting the flotation recovery of bastnaesite.
基金financial support from Singapore Ministry of Education under its AcRF Tier 2 Grant No MOE-T2EP10123-0001Singapore National Research Foundation Investigatorship under Grant No NRF-NRFI08-2022-0009Academic Excellence Foundation of BUAA for PhD Students(applicant:Hongfei Xu).
文摘An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.
文摘Thermal recovery techniques for producing oil sands have substantial environmental impacts.Surfactants can efficiently improve thermal bitumen recovery and reduce the required amount of steam.Such a technique requires solid knowledge about the interaction mechanism between surfactants,bitumen,water,and rock at the nanoscale level.In particular,oil sands ores have extremely complex mineralogy as they contain many clay minerals(montmorillonite,illite,kaolinite).In this study,molecular dynamics simulation is carried out to elucidate the unclear mechanisms of clay minerals contributing to the bitumen recovery under a steam-anionic surfactant co-injection process.We found that the clay content significantly influenced an oil detachment process from hydrophobic quartz surfaces.Results reveal that the presence of montmorillonite,illite,and the siloxane surface of kaolinite in nanopores can enhance the oil detachment process from the hydrophobic surfaces because surfactant molecules have a stronger tendency to interact with bitumen and quartz.Conversely,the gibbsite surfaces of kaolinite curb the oil detachment process.Through interaction energy analysis,the siloxane surfaces of kaolinite result in the most straightforward oil detachment process.In addition,we found that the clay type presented in nanopores affected the wettability of the quartz surfaces.The quartz surfaces associated with the gibbsite surfaces of kaolinite show the strongest hydrophilicity.By comparing previous experimental findings with the results of molecular dynamics(MD)simulations,we observed consistent wetting characteristics.This alignment serves to validate the reliability of the simulation outcomes.The outcome of this paper makes up for the lack of knowledge of a surfactant-assisted bitumen recovery process and provides insights for further in-situ bitumen production engineering designs.
基金the financial support from the National Natural Science Foundation of China(Nos:21773161,22172108)。
文摘Viscoelastic surfactants(VES)are often used as viscous diverters in acidizing stimulation to prolong the acid consumption time and maximize zonal coverage of the acid for improving well productivity.However,the ceiling temperature of commercial VES cannot exceed 120℃in practical use because of the poor thermal stability and fragile molecular structure,hindering their implementation in hightemperature oil reservoirs,i.e.,≥150℃.Here we synthesized a novel C22-tailed diamine,N-erucaminopropyl-N,N-dimethylamine(EDPA),and examined comparatively its rheological behavior,assemblies morphology and molecular stability in 20 wt%HCl with a commercial VES,erucyl dimethyl amidopropyl betaine(EDAB).The feasibility of EDPA for acidizing stimulation was assessed by acid etching of carbonate rock with its HCl solution at 150℃.Rheological results showed that the 2.5 wt%EDPA—20 wt%HCl solution maintains stable viscosity of 90 m Pa s at 150℃for 60 min,while that of 2.0 wt%EDAB HCl solution is just 1 m Pa s under identical conditions.1H NMR spectra and cryo-TEM observations revealed that the chemical structure and self-assembled architectures of EDPA remained intact in such context,but the EDAB suffered from degradation due to the hydrolysis of the amide group,accounting for the poor heat-resistance and acid-tolerance.The reaction rate of 2.5 wt%EDPA HCl solution with carbonate rock was one order of magnitude lower than that of 20 wt%HCl solution at 150℃,underpinning the potential of EDPA to be used in the high-temperature reservoirs acidizing.This work improved the thermal tolerance of VES in highly concentrated HCl solution,paving a feasible way for the acidization of high-temperature reservoir environments(~150℃).
文摘The Brownian dynamics (BD) simulation of a dilute surfactant solution is conducted in a steady shear flow. The rodlike micelle is assumed as a rigid rod composed of lined-up beads. A novel intercluster potential model is introduced for describing the interactions between, micelles. In the model, the Lennard-Jones and the soft-sphere potentials are used as inter-bead potentials for end-end and interior-interior beads, respectively. The micelles are combined at their ends to form a network structure at lower shear rates and are disconnected to become more and more parallel to the shear flow direction with increasing shear rate. The change of micellar microstructures with the variation of the shear rate results in shear thinning characteristics of the computed shear viscosities and first normal stress difference coefficients. The effects of surfactant solution concentration on the micellar structures and rheological properties are also investigated. Results show that the shear viscosities and the first normal stress difference coefficients increase with increasing the viscosity of the surfactant solution.
文摘To investigate the influence of surface characteristics of particles on electrorheological (ER) fluids, water free complex strontium titanate particles were synthesized through the sol gel technique and different mass fraction of the surfactant was doped in particles and dispersed in silicon oil. The test shows that surface characteristics of particles have great influence on the behavior of ER fluids. Surface tension, surface polarity and interfacial polarization are strongly related to the surface status of the dispersed particles.
基金supported by the National Natural Science Foundation of China (Nos. 51774153 and 92062110)。
文摘Ameliorating the problem of low leaching efficiency,long leaching period,and high agent consumption should be studied to efficiently exploit ion-absorbed rare earth ore resources.In this study,the surfactant sodium dodecyl sulfate(SDS) is used to enhance the leaching effect of an ion-absorbed rare earth ore by ameliorating the seepage effect for the first time.The effects of surfactant concentration,leaching agent dosage,solution flow velocity,and solution pH on the leaching rate were explored,and the mechanism of SDS was discussed.Under the optimum conditions,the addition of a small amount of SDS(mass fraction0.04%) can increase the leaching rate by about 5%,shorten the leaching period,and reduce the consumption of the leaching agent.SDS significantly ameliorates the seepage effect of the ore body by reducing the surface tension of the leaching agent and ameliorating the wettability of the mineral surface.This effect is the main factor that improves the leaching efficiency.DFT(density functional theory) calculation results show that SDS can react with rare earth ions,which reduces the adsorption strength on clay mineral surfaces.Hence,rare earth ions are easily exchanged by ammonium ions,and mass transfer is enhanced.
文摘Reservoir wettability plays an important role in various oil recovery processes.The origin and evolution of reservoir wettability were critically reviewed to better understand the complexity of wettability due to interactions in crude oil-brine-rock system,with introduction of different wetting states and their influence on fluid distribution in pore spaces.The effect of wettability on oil recovery of waterflooding was then summarized from past and recent research to emphasize the importance of wettability in oil displacement by brine.The mechanism of wettability alteration by different surfactants in both carbonate and sandstone reservoirs was analyzed,concerning their distinct surface chemistry,and different interaction patterns of surfactants with components on rock surface.Other concerns such as the combined effect of wettability alteration and interfacial tension (IFT) reduction on the imbibition process was also taken into account.Generally,surfactant induced wettability alteration for enhanced oil recovery is still in the stage of laboratory investigation.The successful application of this technique relies on a comprehensive survey of target reservoir conditions,and could be expected especially in low permeability fractured reservoirs and forced imbibition process.
基金supported by the National Key Scientific and Technological Projects (2008ZX05011)
文摘The influences of an anionic-nonionic composite surfactant and petroleum sulfonate, used in surfactant-polymer flooding in Shengli Gudong oilfield, East China, on the interfacial properties of Gudong crude model oil and synthetic formation water was studied by measuring interfacial tension, interfacial viscoelasticity and Zeta potential. The in? uence of the surfactants on the stability of Gudong water-in-oil (W/O) and oil-in-water (O/W) emulsions was evaluated by separating water from the W/O emulsion and residual oil in the aqueous phase of the O/W emulsion respectively. The results showed that the two kinds of surfactants, namely anionic-nonionic composite surfactant and petroleum sulfonate, are both able to decrease the interfacial tension between the oil phase and the aqueous phase and increase the surface potential of the oil droplets dispersed in the O/W emulsion, which can enhance the stability of the W/O and O/W crude oil emulsions. Compared with petroleum sulfonate, the anionic-nonionic composite surfactant is more interfacially active and able to enhance the strength of the interfacial film between oil and water, hence enhance the stability of the W/O and O/W emulsions more effectively.
文摘A significant fraction of the conventional oil reserves globally is in carbonate formations which contain a substantial amount of residual oil. Since primary and secondary recovery methods fail to yield above 20%-40%of original oil in place from these reserves, the need for enhanced oil recovery(EOR) techniques for incremental oil recovery has become imperative. With the challenges presented by the highly heterogeneous carbonate rocks,evaluation of tertiary-stage recovery techniques including chemical EOR(c EOR) has been a high priority for researchers and oil producers. In this review, the latest developments in the surfactant-based c EOR techniques applied in carbonate formations are discussed, contemplating the future direction of existing methodologies. In connection with this, the characteristics of heterogeneous carbonate reservoirs are outlined. Detailed discussion on surfactant-led oil recovery mechanisms and related processes, such as wettability alteration, interfacial tension reduction, microemulsion phase behavior, surfactant adsorption and mitigation, and foams and their applications is presented. Laboratory experiments, as well as field study data obtained using several surfactants, are also included.This extensive discussion on the subject aims to help researchers and professionals in the field to understand the current situation and plan future enterprises accordingly.
基金the financial support provided by Council for Scientific and Industrial Research [22(0649)/13/EMR-II], New Delhi, to the Department of Petroleum Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
文摘Surfactants for enhanced oil recovery are important to study due to their special characteristics like foam generation,lowering interfacial tension between oleic and aqueous phases,and wettability alteration of reservoir rock surfaces.Foam is a good mobility control agent in enhanced oil recovery for improving the mobility ratio.In the present work,the foaming behavior of three nonionic ethoxylated surfactants,namely Tergitol 15-S-7,Tergitol 15-S-9,and Tergitol 15-S-12,was studied experimentally.Among the surfactants,Tergitol 15-S-12 shows the highest foamability.The effect of Na Cl concentration and synthetic seawater on foaming behavior of the surfactants was investigated by the test-tube shaking method.The critical micelle concentrations of aqueous solutions of the different nonionic surfactants were measured at 300 K.It was found that the critical micelle concentrations of all surfactants also increased with increasing ethylene oxide number.Dynamic light scattering experiments were performed to investigate the micelle sizes of the surfactants at their respective critical micelle concentrations.Core flooding experiments were carried out in sand packs using the surfactant solutions.It was found tha t22% additional oil was recovered in the case of all the surfactants over secondary water flooding.Tergitol 15-S-12exhibited the maximum additional oil recovery which is more than 26%after water injection.
文摘In the present work we studied the induction periods of hydrate formation of natural gas in pure water, aqueous solutions of surfactants, and in the presence of surfactant together with aluminum oxide nanopowder, the activity of which as hydrate formation inducer was studied previously. Sodium dodecyl sulfate(SDS) or neonol AF-9-12 were used as the surfactants. It was demonstrated that the addition of either surfactants or aluminum oxide powder under our experimental conditions causes a decrease in the induction period of hydrate formation from;05 min for pure water to 30–35 min for water with additives. In the case of the simultaneous presence of surfactants and aluminum oxide powder in the system, induction period decreased to;0 min. So, the synergistic effect of the combination of surfactant and oxide powder on gas hydrate nucleation was demonstrated. Possible reasons of this effect have been discussed.
基金Projects 50374037 and 50574038 supported by the National Natural Science Foundation of ChinaB2007-10 by the Provincial Natural Science Foundation of Heilongjiang
文摘Acceleration of gas hydrate formation is important in preventing coal and gas outbursts and is based on a hydration mechanism. It becomes therefore necessary to investigate the effect of surfactants, acting as accelerants for hydrate formation, on induction time. We experimented with three types of a Tween solution with equal concentrations of 0.001 mol/L (T40, T40/T80 (1:1), T40/T80 (4:1)). By means of visual experimental equipment, developed by us, we measured generalized induction time using a Direct Observation Method. The experimental data were analyzed combined with a mass transfer model and a hydrate crystal nuclei growth model. Our major conclusions are as follows: 1) solubilization of surfactants produces supersaturated gas molecules, which promotes the mass transfer from a bulk phase to hydrates and provides the driving force for the complexation between host molecules (water) and guest molecules in a gas hydrate formation process; 2) when the solution of the surfactant concentration exceeds the critical micelle concentration (CMC), the surfactant in an aqueous solution will transform to micelles. Most of the gas molecules are bound to form clusters with water molecules, which promotes the formation of crystal nuclei of gas hydrates; 3) the surfactant T40 proved to have more notable effects on the promotion of crystal nuclei formation and on shortening the induction time, compared with T40/T80 (1:1) and T40/T80 (4:1).
文摘Naturally fractured carbonate reservoirs have very low oil recovery efficiency owing to their wettability and tightness of matrix.However,smart water can enhance oil recovery by changing the wettability of the carbonate rock surface from oilwet to water-wet,and the addition of surfactants can also change surface wettability.In the present study,the effects of a solution of modified seawater with some surfactants,namely C12 TAB,SDS,and TritonX-100(TX-100),on the wettability of carbonate rock were investigated through contact angle measurements.Oil recovery was studied using spontaneous imbibition tests at 25,70,and 90°C,followed by thermal gravity analysis to measure the amount of adsorbed material on the carbonate surface.The results indicated that Ca2+,Mg2+,and SO42-.ions may alter the carbonate rock wettability from oil-wet to water-wet,with further water wettability obtained at higher concentrations of the ions in modified seawater.Removal of NaCl from the imbibing fluid resulted in a reduced contact angle and significantly enhanced oil recovery.Low oil recoveries were obtained with modified seawater at 25 and 70°C,but once the temperature was increased to 90°C,the oil recovery in the spontaneous imbibition experiment increased dramatically.Application of smart water with C12 TAB surfactant at 0.1 wt%changed the contact angle from 161°to 52°and enhanced oil recovery to 72%,while the presence of the anionic surfactant SDS at 0.1 wt%in the smart water increased oil recovery to 64.5%.The TGA analysis results indicated that the adsorbed materials on the carbonate surface were minimal for the solution containing seawater with C12 TAB at 0.1 wt%(SW+CTAB(0.1 wt%)).Based on the experimental results,a mechanism was proposed for wettability alteration of carbonate rocks using smart water with SDS and C12 TAB surfactants.
基金financially supported by the National Key R&D Program of China(No.2019YFA0708700)National Science Fund of China(No.51804327,51834010)+1 种基金Climb Taishan Scholar Program in Shandong Province(No.tspd20161004)the Fundamental Research Funds for the Central Universities(No.18CX02026A,24720182026A)。
文摘In recent years,production from tight oil reservoirs has increasingly supplemented production from conventional oil resources.Oil-wet formations account for a considerable proportion of tight oil reservoirs.Surfactant can change wettability and reduce interfacial tension,thus resulting in a better oil recovery.In this manuscript,a nonionic surfactant was introduced for tight oil-wet reservoirs.The oil recovery in the oil-wet sandstone due to spontaneous imbibition was 8.59%lower than that of the waterwet sandstone due to surfactant.The 0.1%surfactant solution corresponded to the highest imbibition recovery rate of 27.02%from the oil-wet sample.With the surfactant treatment,the treated core quickly changed from weakly oil-wet to weakly water-wet.The capillary force acted as the driving force and promoted imbibition.The optimal surfactant adsorption quantity in the oil-wet sandstone was observed in the sample at concentrations ranging from 0.1%to 0.3%,which also corresponded to the highest oil recovery.Analysis of the inverse Bond number NB-1 suggested that the driving force was gravity for brine imbibition in the oil-wet cores and that it was capillary force for surfactant imbibition in the oil-wet cores.When the surfactant concentration was lower than the critical micelle concentration,the surfactant concentration was negatively correlated with the inverse Bond number and positively correlated with the oil recovery rate.When the surfactant concentration was higher than the critical micelle concentration,the oil recovery increased with a smaller interfacial tension.Nuclear magnetic resonance suggested that the movable pore and pore throat size in the oil-wet sample decreased from 0.363 mm in the untreated rock to 0.326 mm with the surfactant treatment,which indicated that the surfactant improved the flow capacity of the oil.The findings of this study can help to better understand the adsorption impact of surfactants on the characteristics of the oil/water and solid/liquid interfaces.The imbibition mechanism in oil-wet tight sandstone reservoirs was further revealed.These systematic approaches help to select appropriate surfactants for better recovery in oil-wet tight sandstone reservoirs through imbibition.
基金This work was supported by the National Natural Science Foundation of China(No.51874320).
文摘Spontaneous imbibition is an important phenomenon in tight reservoirs.The existence of a large number of fractures and micro-nano pores is the key factor affecting the spontaneous imbibition of tight reservoirs.In this study,based on high-pressure mercury injection and nuclear magnetic resonance experiments,the pore distribution of tight sandstone is described.The influence of fractures,core porosity and permeability,and surfactants on the spontaneous imbibition of tight sandstone are studied by physical fracturing,interfacial tension test,wettability test and imbibition experiments.The results show that:the pore radius of tight sandstone is concentrated in 0.01-1 mm.Fractures can effectively reduce the oil drop adsorption on the core surface,enhancing the imbibition recovery of the tight sandstone with an increase of about 10%.As the number of fractures increases,the number of oil droplets adsorbed on the core surface decrease and the imbibition rate increases.The imbibition recovery increases with the increase in pore connectivity,while the imbibition rate increases with the increases in core porosity and permeability.The surfactant can improve the core water wettability and reduce the oilwater interfacial tension,reducing the adsorption of oil droplets on the core surface,and improving the core imbibition recovery with an increase of about 15%.In a word,the existence of fractures and surfactants can enhance the pore connectivity of the reservoir,reduce the adsorption of oil droplets on the core surface,and improve the imbibition rate and recovery rate of the tight oil reservoir.
基金supported by the Natural Science Foundation of China (Grant No. 51574257)National 973 Project (No. 2015CB250900)
文摘Hydraulic fracturing technology can significantly increase oil production from tight oil formations, but performance data show that production declines rapidly. In the long term, it is necessary to increase the development efficiency of block matrix, surfactant-aided imbibition is a potential way. The current work aimed to explain comprehensively how surfactants can enhance the imbibition rate. Laboratory experiments were performed to investigate the effects of wettability, interfacial tension(IFT), and relative permeability as the key parameters underlying surfactant solution imbibition. Two different types of surfactants, sodium dodecyl sulfate and polyethylene glycol octylphenol ether, at varied concentrations were tested on reservoir rocks. Experimental results showed that the oil recovery rate increased with increased wettability alteration and IFT and decreased residual oil saturation. A mechanistic simulator developed in previous studies was used to perform parametric analysis after successful laboratory-scale validation. Results were proven by parametric studies. This study,which examined the mechanism and factors influencing surfactant solution imbibition, can improve understanding of surfactant-aided imbibition and surfactant screening.