The deformation behavior of dispersion strengthened copper alloy Cu-Al2O3 was studied by TEM. The results show that nano-scaled dispersed second phase not only increases dislocation density in matrix, but also has an ...The deformation behavior of dispersion strengthened copper alloy Cu-Al2O3 was studied by TEM. The results show that nano-scaled dispersed second phase not only increases dislocation density in matrix, but also has an important influence on the dislocation substructure. The presence of fine dispersed Al2 O3 particles results in a uniform and random dislocation distribution in matrix copper and causes the difficulty in formation of dislocation cell structure and the decrease in the amount of cell structure during deformation. Deformation gives rise to much more dislocations and dislocation cells form more difficultly and the decrease in the cell size with the increase of dispersion degree.展开更多
A discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened(ODS) steels was described. Parametric dislocation dynamics(PDD) simulation of the interaction between an edge dis...A discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened(ODS) steels was described. Parametric dislocation dynamics(PDD) simulation of the interaction between an edge dislocation and randomly distributed spherical dispersoids(Y2O3) in bcc iron was performed for measuring the influence of the dispersoid distribution on the critical resolved shear stress(CRSS). The dispersoid distribution was made using a method mimicking the Ostwald growth mechanism. Then, an edge dislocation was introduced, and was moved under a constant shear stress condition. The CRSS was extracted from the result of dislocation velocity under constant shear stress using the mobility(linear) relationship between the shear stress and the dislocation velocity. The results suggest that the dispersoid distribution gives a significant influence to the CRSS, and the influence of dislocation dipole, which forms just before finishing up the Orowan looping mechanism, is substantial in determining the CRSS, especially for the interaction with small dispersoids. Therefore, the well-known Orowan equation for determining the CRSS cannot give an accurate estimation, because the influence of the dislocation dipole in the process of the Orowan looping mechanism is not accounted for in the equation.展开更多
This paper discusses about the purity of strengthened pure platinum wire and the development method of platinum micro wire, in order to solve the difficulties of low tensile strength, easy to break, and low rate of mi...This paper discusses about the purity of strengthened pure platinum wire and the development method of platinum micro wire, in order to solve the difficulties of low tensile strength, easy to break, and low rate of micro wire. And it contrasts some performance of strengthened pure platinum wire and sponge Pt wire. The researches draw a conclusion that the thermoelectric properties of strengthened pure platinum micro wire was in accordance with national standards and satisfied users' requirements.展开更多
The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigati...The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigation and theoretical analysis were made on the law of deflection development and stiffness degradation, as well as the influence of fatigue load ranges. Test results indicate that the law of three-stage change under fatigue loading is followed by both midspan deflection and permanent deflection, which also have positive correlation with fatigue load amplitude. Fatigue stiffness of composite strengthened beams degrades gradually with the increasing of number of cycles. Based on the experimental results, a theoretical model by effective moment of inertia method is developed for calculating the sectional stiffness of such composite strengthened beams under fatigue loading, and the calculated results are in good agreement with the experimental results.展开更多
Four-point bending tests were conducted up to failure on eleven reinforced concrete (RC) beams and strengthening beams to study the effectiveness of externally pouring ultra high toughness cementitious composites (UHT...Four-point bending tests were conducted up to failure on eleven reinforced concrete (RC) beams and strengthening beams to study the effectiveness of externally pouring ultra high toughness cementitious composites (UHTCC) on improving the flexural behavior of existing RC beams.The strengthening materials included UHTCC and high strength grade concrete.The parameters,such as thickness and length of strengthening layer and reinforcement in post-poured layer,were analyzed.The flexural behavior,failure mode and crack propagation of composite beams were investigated.The test results show that the strengthening layer improves the cracking and ultimate load by increasing the cross section area.Introducing UHTCC material into strengthening not only improves the bearing capacity of the original specimens,but also disperses larger cracks in upper concrete into multiple tightly-spaced fine cracks,thus prolonging the appearance of harm surface cracks and increasing the durability of existing structures.Compared with post-poured concrete,UHTCC is more suitable for working together with reinforcement.The load?deflection plots obtained from three-dimensional finite-element model (FEM) analyses are compared with those obtained from the experimental results,and show close correlation.展开更多
Rehabilitation of existing structures with fiber reinforced plastic(FRP)has been growing in popularity because they offer superior performance in terms of resistance to corrosion and high specific stiffness.The strain...Rehabilitation of existing structures with fiber reinforced plastic(FRP)has been growing in popularity because they offer superior performance in terms of resistance to corrosion and high specific stiffness.The strain coordination results of 34 reinforced concrete beams(four groups)strengthened with different methods were presented including external-bonded or near-surface mounted glass or carbon FRP or helical rib bar in order to study the strain coordination of the strengthening materials and steel rebar of RC beam.Because there is relative slipping between concrete and strengthening materials(SM),the strain of SM and steel rebar of RC beam satisfies the double linear strain distribution assumption,that is,the strain of longitudinal fiber parallel to the neutral axis of plated beam within the scope of effective height(h0)of the cross section is in direct proportion to the distance from the fiber to the neutral axis.The strain of SM and steel rebar satisfies the equation εGCH=βεsteel,where the value of β is equal to 1.1-1.3 according to the test results.展开更多
The low-cost Fe-Cu,Fe-Ni,and Cu-based high-entropy alloys exhibit a widespread utilization prospect.However,these potential applications have been limited by their low strength.In this study,a novel Fe_(31)Cu_(31)Ni_(...The low-cost Fe-Cu,Fe-Ni,and Cu-based high-entropy alloys exhibit a widespread utilization prospect.However,these potential applications have been limited by their low strength.In this study,a novel Fe_(31)Cu_(31)Ni_(28)Al_(4)Ti_(3)Co_(3) immiscible high-entropy alloy(HEA)was developed.After vacuum arc melting and copper mold suction casting,this HEA exhibits a unique phase separation microstructure,which consists of striped Cu-rich regions and Fe-rich region.Further magnification of the striped Cu-rich region reveals that it is composed of a Cu-rich dot-like phase and a Fe-rich region.The aging alloy is further strengthened by a L1_(2)-Ni_(3)(AlTi)nanoprecipitates,achieving excellent yield strength(1185 MPa)and uniform ductility(~8.8%).The differential distribution of the L1_(2) nanoprecipitate in the striped Cu-rich region and the external Fe-rich region increased the strength difference between these two regions,which increased the strain gradient and thus improved hetero-deformation induced(HDI)hardening.This work provides a new route to improve the HDI hardening of Fe-Cu alloys.展开更多
Based on the theory of concrete structure, a new expression was derived for lagged strain of fiber-reinforced polymer (FLIP) laminates in reinforced concrete (RC) beams strengthened with FRP. The influence of diff...Based on the theory of concrete structure, a new expression was derived for lagged strain of fiber-reinforced polymer (FLIP) laminates in reinforced concrete (RC) beams strengthened with FRP. The influence of different preloaded states and nonlinear stress-strain relationship of compressed concrete were both taken into account in this approach. Then a simplified expression was given by ignoring tensile resistance of concrete. Comparison of analytical predictions with experimental results indicates satisfactory accuracy of the procedures. The errors are less than 8% and 10% respectively when the tensile resistance of concrete is or not considered. While the maximum error of existing procedures is up to 60%.展开更多
Microstructure and mechanical properties of aged Mg-10Gd-2Y-0.4Zr-0.4Ag alloy sheets prepared by different rolling routes were investigated.The results showed that the cross rolling aged(CRA)sheet possesses larger gra...Microstructure and mechanical properties of aged Mg-10Gd-2Y-0.4Zr-0.4Ag alloy sheets prepared by different rolling routes were investigated.The results showed that the cross rolling aged(CRA)sheet possesses larger grain size than unidirectional rolling aged(URA)sheet due to the occurrence of dynamic recovery during rolling which reduces the dislocation density and delays dynamic recrystallization(DRX).The URA sheet has basal texture and RD favored texture while CRA sheet has multiple-peak texture.Both sheets precipitate β'phase and CRA sheet exhibits a stronger aging response.The CRA sheet has higher yield strength and tensile strength than URA sheet,with reduced yield strength anisotropy but increased tensile strength anisotropy.Taking into account different strengthening mechanisms,although the finer grain size of URA sheet enhances grain boundary strengthening,CRA sheet is more responsive to aging,leading to superior aging-precipitated phase strengthening and consequently higher yield strength.展开更多
Heterogeneous structure exhibits superiority in improving mechanical properties,whereas their effects on fatigue damage properties have rarely been studied.In this work,we employed a high-throughput gradient heat trea...Heterogeneous structure exhibits superiority in improving mechanical properties,whereas their effects on fatigue damage properties have rarely been studied.In this work,we employed a high-throughput gradient heat treatment method(757−857℃)to rapidly acquire the solution microstructure of the Ti-6554 alloy with different recrystallization degrees(0%,40%and 100%),followed by the same aging treatment.The results showed that theβ-hetero structure exhibited a yield strength(σ_(YS))of 1403 MPa,an increase of 6.7%,and a remarkable improvement in uniform elongation(UE)of 109.7%,reaching 6.5%,compared to the homogeneous structure.Interestingly,introducing a heterogeneous structure not only overcame the traditional trade-off between strength and ductility but also enhanced fatigue crack propagation(FCP)performance.During FCP process,β-hetero structure,through hetero-deformation induced(HDI)strengthening effects,promoted the accumulation of geometric necessary dislocations(GNDs)within coarseα_(S) phase,enabling faster attainment of the critical shear stress of twinning and increasing twinning density.This facilitated stress relief,improved plastic deformation in the crack tip zone,and increased the critical fast fracture threshold from 30.4 to 36.0 MPa·m^(1/2)showing an enlarged steady state propagation region.This study provides valuable insights on tailoring fatigue damage tolerance through heterogeneous structure for titanium alloys.展开更多
The effects of solution and ageing treatment (T6) on microstructure and tensile properties of as-extruded Mg-10Gd-3Y-0.6Zr (mass fraction. %) alloy were investigated. The results show that after T6 treatment, the diam...The effects of solution and ageing treatment (T6) on microstructure and tensile properties of as-extruded Mg-10Gd-3Y-0.6Zr (mass fraction. %) alloy were investigated. The results show that after T6 treatment, the diameter of grain increases to 20 μm. As the second phases dissolve into the matrix, the smaller and denser β′ phases precipitate inside the grains. After T6-treatment, both yield strength (TYS) and ultimate tensile strength (UTS) are increased. Comparing with that in only ageing condition (T5), the UTS and TYS increased from 365 MPa,285 MPa to 400 MPa,310 MPa, respectively, but the elongation decreased from 7.0% to 3.5%. It has been found that the effects of precipitates on the strength are stronger than that of the growth of grain size.展开更多
(January 16-30, 1993) On January 17,Indian Prime Minister Narasimha Rao strengthened his hand by introducing four senior Congress Party members into the cabinet and dropping 14 members of the Council of Ministers.
The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and different...The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and differential scanning calorimetry(DSC).The water-cooled and aged alloy exhibits higher strength than the air-cooled and aged alloy;2.5%pre-stretching of tensile deformation exerts little effect on strength of water-cooled and aged alloy but increases that of air-cooled and aged one,and therefore the yield strength reduction rate due to slow quenching decreases from about 3.8%to about 1.0%,reducing quench sensitive effect.For the air-cooled alloy,pre-stretching increases the sizes ofη'strengthening precipitates but also increases their quantity and the ratio of diameter to thickness,resulting in enhanced strengthening and higher strength after aging.The reason has been discussed based on microstructure examination by TEM and DSC.展开更多
This paper presents an experimental study on the behavior of circular concrete columns reinforced by BFRP-PVC tubes under uniaxial loading.A total of six specimens were prepared and tested under uniaxial loading.The m...This paper presents an experimental study on the behavior of circular concrete columns reinforced by BFRP-PVC tubes under uniaxial loading.A total of six specimens were prepared and tested under uniaxial loading.The main parameters varied in the tests were strengthening ratio and strengthening approach of BFRP.The performance,such as failure modes,ultimate bearing capacity and stress-strain curves,was investigated in details and a formula was proposed to predict the compressive ultimate strength.The results show that this kind of confined columns obviously improves the ultimate bearing capacity,and the ultimate bearing capacity increases with the strengthening layers.The formula proposed is applicable and efficient for prediction of the ultimate bearing capacity as well.展开更多
The effects of low temperature thermo-mechanical treatment (LTTMT) on microstructures and mechanical properties of Ti-6Al-4V (TC4) alloy were studied by optical microscopy (OM), tensile test, scanning electron m...The effects of low temperature thermo-mechanical treatment (LTTMT) on microstructures and mechanical properties of Ti-6Al-4V (TC4) alloy were studied by optical microscopy (OM), tensile test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results confirm that the strength of TC4 alloy can be improved obviously by LTTMT processing, which combines strain strengthening with aging strengthening. The effect of LTTMT on the alloy depends on the microstructure of the refined and dispersed a+fl phase on the basis of high dislocation density by pre-deformation below recrystallization temperature. The tensile strength decreases with the increase of pre-deformation reduction. The optimal processing parameters of LTTMT for TC4 alloy are as follows: solution treatment at 900 ℃ for 15 min, pre-deformation in the range of 600-700 ℃ with a reduction of 35%, finally aging at 540 ℃ for 4 h followed by air-cooling.展开更多
Precipitation behavior of Ti in high strength steels was investigated by means of the equilibrium solid solubility theory. The contributions of Ti content to yield strength were calculated. The calculated results were...Precipitation behavior of Ti in high strength steels was investigated by means of the equilibrium solid solubility theory. The contributions of Ti content to yield strength were calculated. The calculated results were verified by the hot rolling experiment for C–Mn steel and C–Mn–Ti micro alloyed steel, respectively. The research results show that the precipitates are mainly Ti N at the higher temperature. With the decreasing temperature, the proportion of Ti C in precipitates increases gradually. When the temperature drops to 800 °C, Ti C will become predominant for the precipitation of Ti. When Ti content is less than 0.014%(mass fraction), Ti has little influence on the yield strength. When Ti content is in the range of 0.014%–0.03%(mass fraction), the yield strength of Ti micro alloyed steel is greatly increased, which leads to instability of the mechanical properties of the steel. Therefore, the design of Ti content in high strength steels should avoid this Ti content range. When Ti content is higher than 0.03%, the yield strength increases stably. In this experiment, when added Ti content was controlled in the range of 0.03%–0.05%, the contribution to the yield strength of Ti micro alloyed steel can reach about 92.44 MPa.展开更多
In this paper,15Cr-ODS steels containing 0,1 wt%,2 wt%and 3 wt%Al element were fabricated by combining wet-milling and spark plasma sintering(SPS)methods.The microstructure and mechanical properties of ODS steel were ...In this paper,15Cr-ODS steels containing 0,1 wt%,2 wt%and 3 wt%Al element were fabricated by combining wet-milling and spark plasma sintering(SPS)methods.The microstructure and mechanical properties of ODS steel were investigated by XRD,SEM,TEM,EBSD and tensile tests.The results demonstrate that the Al addition significantly refines the particle precipitates in the Fe-Cr matrix,leading to the obvious refinement in grain size of matrix and the improvement of mechanical properties.The dispersion particles in ODS steels with Al addition are identified as Al2O3 and Y_(2)Ti_(2)O_(7)nanoparticles,which has a heterogeneous size distribution in the range of 5 nm to 300 nm.Increasing Al addition causes an obvious increase in tensile strength and a decline in elongation.The tensile strength and elongation of 15Cr-ODS steel containing 3 wt%Al are 775.3 MPa and 15.1%,respectively.The existence of Al element improves the corrosion resistance of materials.The ODS steel containing 2 wt%Al shows corrosion potential of 0.39 V and passivation current density of 2.61×10^(−3)A/cm^(2)(1.37 V).This work shows that Al-doped ODS steels prepared by wet-milling and SPS methods have a potential application in structural parts for nuclear system.展开更多
In the present investigation, the relation of pre-ageing temperature and pre-ageing time to mechanical properties was studied, and a model was established to predict the mechanical properties of AA6005 Al alloy. Compa...In the present investigation, the relation of pre-ageing temperature and pre-ageing time to mechanical properties was studied, and a model was established to predict the mechanical properties of AA6005 Al alloy. Compared with the experimental results, the deviation of the proposed model was limited to 8.1%, which showed reasonable accuracy of forecasting. It was found that the performance of AA6005 alloy was better at higher pre-ageing temperature with shorter pre-ageing time than that at T6 temper. The microstructure of the alloy was observed by transmission electron microscopy, and the results showed that high dislocation density and precipitate density existed at 160 ℃ and 200 ℃ pre-ageing, which were in good agreement with the model.展开更多
文摘The deformation behavior of dispersion strengthened copper alloy Cu-Al2O3 was studied by TEM. The results show that nano-scaled dispersed second phase not only increases dislocation density in matrix, but also has an important influence on the dislocation substructure. The presence of fine dispersed Al2 O3 particles results in a uniform and random dislocation distribution in matrix copper and causes the difficulty in formation of dislocation cell structure and the decrease in the amount of cell structure during deformation. Deformation gives rise to much more dislocations and dislocation cells form more difficultly and the decrease in the cell size with the increase of dispersion degree.
文摘A discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened(ODS) steels was described. Parametric dislocation dynamics(PDD) simulation of the interaction between an edge dislocation and randomly distributed spherical dispersoids(Y2O3) in bcc iron was performed for measuring the influence of the dispersoid distribution on the critical resolved shear stress(CRSS). The dispersoid distribution was made using a method mimicking the Ostwald growth mechanism. Then, an edge dislocation was introduced, and was moved under a constant shear stress condition. The CRSS was extracted from the result of dislocation velocity under constant shear stress using the mobility(linear) relationship between the shear stress and the dislocation velocity. The results suggest that the dispersoid distribution gives a significant influence to the CRSS, and the influence of dislocation dipole, which forms just before finishing up the Orowan looping mechanism, is substantial in determining the CRSS, especially for the interaction with small dispersoids. Therefore, the well-known Orowan equation for determining the CRSS cannot give an accurate estimation, because the influence of the dislocation dipole in the process of the Orowan looping mechanism is not accounted for in the equation.
文摘This paper discusses about the purity of strengthened pure platinum wire and the development method of platinum micro wire, in order to solve the difficulties of low tensile strength, easy to break, and low rate of micro wire. And it contrasts some performance of strengthened pure platinum wire and sponge Pt wire. The researches draw a conclusion that the thermoelectric properties of strengthened pure platinum micro wire was in accordance with national standards and satisfied users' requirements.
基金Project(51108355)supported by the National Natural Science Foundation of ChinaProject(2011CDB269)supported by the Natural Science Foundation of Hubei Province,China
文摘The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigation and theoretical analysis were made on the law of deflection development and stiffness degradation, as well as the influence of fatigue load ranges. Test results indicate that the law of three-stage change under fatigue loading is followed by both midspan deflection and permanent deflection, which also have positive correlation with fatigue load amplitude. Fatigue stiffness of composite strengthened beams degrades gradually with the increasing of number of cycles. Based on the experimental results, a theoretical model by effective moment of inertia method is developed for calculating the sectional stiffness of such composite strengthened beams under fatigue loading, and the calculated results are in good agreement with the experimental results.
基金Project(50438010) supported by the National Natural Science Foundation of China
文摘Four-point bending tests were conducted up to failure on eleven reinforced concrete (RC) beams and strengthening beams to study the effectiveness of externally pouring ultra high toughness cementitious composites (UHTCC) on improving the flexural behavior of existing RC beams.The strengthening materials included UHTCC and high strength grade concrete.The parameters,such as thickness and length of strengthening layer and reinforcement in post-poured layer,were analyzed.The flexural behavior,failure mode and crack propagation of composite beams were investigated.The test results show that the strengthening layer improves the cracking and ultimate load by increasing the cross section area.Introducing UHTCC material into strengthening not only improves the bearing capacity of the original specimens,but also disperses larger cracks in upper concrete into multiple tightly-spaced fine cracks,thus prolonging the appearance of harm surface cracks and increasing the durability of existing structures.Compared with post-poured concrete,UHTCC is more suitable for working together with reinforcement.The load?deflection plots obtained from three-dimensional finite-element model (FEM) analyses are compared with those obtained from the experimental results,and show close correlation.
基金Project(11B033)supported by the Foundation for Excellent Young Scholars of Hunan Scientific Committee,ChinaProject(116001)supported by the Consultative Program of the Chinese Academy of Engineering+1 种基金Project(11JJ6040)supported by the National Natural Science Foundation of Hunan Province,ChinaProject(2010GK3198)supported by the Science and Research Program of Hunan Province,China
文摘Rehabilitation of existing structures with fiber reinforced plastic(FRP)has been growing in popularity because they offer superior performance in terms of resistance to corrosion and high specific stiffness.The strain coordination results of 34 reinforced concrete beams(four groups)strengthened with different methods were presented including external-bonded or near-surface mounted glass or carbon FRP or helical rib bar in order to study the strain coordination of the strengthening materials and steel rebar of RC beam.Because there is relative slipping between concrete and strengthening materials(SM),the strain of SM and steel rebar of RC beam satisfies the double linear strain distribution assumption,that is,the strain of longitudinal fiber parallel to the neutral axis of plated beam within the scope of effective height(h0)of the cross section is in direct proportion to the distance from the fiber to the neutral axis.The strain of SM and steel rebar satisfies the equation εGCH=βεsteel,where the value of β is equal to 1.1-1.3 according to the test results.
基金Projects(52001083,52171111,U2141207)supported by the National Natural Science Foundation of ChinaProject(LH2020E060)supported by the Natural Science Foundation of Heilongjiang,China。
文摘The low-cost Fe-Cu,Fe-Ni,and Cu-based high-entropy alloys exhibit a widespread utilization prospect.However,these potential applications have been limited by their low strength.In this study,a novel Fe_(31)Cu_(31)Ni_(28)Al_(4)Ti_(3)Co_(3) immiscible high-entropy alloy(HEA)was developed.After vacuum arc melting and copper mold suction casting,this HEA exhibits a unique phase separation microstructure,which consists of striped Cu-rich regions and Fe-rich region.Further magnification of the striped Cu-rich region reveals that it is composed of a Cu-rich dot-like phase and a Fe-rich region.The aging alloy is further strengthened by a L1_(2)-Ni_(3)(AlTi)nanoprecipitates,achieving excellent yield strength(1185 MPa)and uniform ductility(~8.8%).The differential distribution of the L1_(2) nanoprecipitate in the striped Cu-rich region and the external Fe-rich region increased the strength difference between these two regions,which increased the strain gradient and thus improved hetero-deformation induced(HDI)hardening.This work provides a new route to improve the HDI hardening of Fe-Cu alloys.
基金Project(2002G043) supported by the Science & Technology Research Program of Chinese Railway MinistryProject (05JJ30101)supported by the Natural Science Foundation of Hunan Province, China
文摘Based on the theory of concrete structure, a new expression was derived for lagged strain of fiber-reinforced polymer (FLIP) laminates in reinforced concrete (RC) beams strengthened with FRP. The influence of different preloaded states and nonlinear stress-strain relationship of compressed concrete were both taken into account in this approach. Then a simplified expression was given by ignoring tensile resistance of concrete. Comparison of analytical predictions with experimental results indicates satisfactory accuracy of the procedures. The errors are less than 8% and 10% respectively when the tensile resistance of concrete is or not considered. While the maximum error of existing procedures is up to 60%.
基金Project(2023GK2020)supported by the Key Research and Development Program of Hunan Province,China。
文摘Microstructure and mechanical properties of aged Mg-10Gd-2Y-0.4Zr-0.4Ag alloy sheets prepared by different rolling routes were investigated.The results showed that the cross rolling aged(CRA)sheet possesses larger grain size than unidirectional rolling aged(URA)sheet due to the occurrence of dynamic recovery during rolling which reduces the dislocation density and delays dynamic recrystallization(DRX).The URA sheet has basal texture and RD favored texture while CRA sheet has multiple-peak texture.Both sheets precipitate β'phase and CRA sheet exhibits a stronger aging response.The CRA sheet has higher yield strength and tensile strength than URA sheet,with reduced yield strength anisotropy but increased tensile strength anisotropy.Taking into account different strengthening mechanisms,although the finer grain size of URA sheet enhances grain boundary strengthening,CRA sheet is more responsive to aging,leading to superior aging-precipitated phase strengthening and consequently higher yield strength.
基金Project(2021YFB3700801)supported by the National Key Research and Development Program of ChinaProject(2023JJ30683)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the State Key Laboratory of Powder Metallurgy(Central South University),China。
文摘Heterogeneous structure exhibits superiority in improving mechanical properties,whereas their effects on fatigue damage properties have rarely been studied.In this work,we employed a high-throughput gradient heat treatment method(757−857℃)to rapidly acquire the solution microstructure of the Ti-6554 alloy with different recrystallization degrees(0%,40%and 100%),followed by the same aging treatment.The results showed that theβ-hetero structure exhibited a yield strength(σ_(YS))of 1403 MPa,an increase of 6.7%,and a remarkable improvement in uniform elongation(UE)of 109.7%,reaching 6.5%,compared to the homogeneous structure.Interestingly,introducing a heterogeneous structure not only overcame the traditional trade-off between strength and ductility but also enhanced fatigue crack propagation(FCP)performance.During FCP process,β-hetero structure,through hetero-deformation induced(HDI)strengthening effects,promoted the accumulation of geometric necessary dislocations(GNDs)within coarseα_(S) phase,enabling faster attainment of the critical shear stress of twinning and increasing twinning density.This facilitated stress relief,improved plastic deformation in the crack tip zone,and increased the critical fast fracture threshold from 30.4 to 36.0 MPa·m^(1/2)showing an enlarged steady state propagation region.This study provides valuable insights on tailoring fatigue damage tolerance through heterogeneous structure for titanium alloys.
基金Project supported by program for Changjiang Scholars and Innovative Research Teamin University(IRT0713)National Basic Research Program ofChina (2007CB613702, 2007CB613701)
文摘The effects of solution and ageing treatment (T6) on microstructure and tensile properties of as-extruded Mg-10Gd-3Y-0.6Zr (mass fraction. %) alloy were investigated. The results show that after T6 treatment, the diameter of grain increases to 20 μm. As the second phases dissolve into the matrix, the smaller and denser β′ phases precipitate inside the grains. After T6-treatment, both yield strength (TYS) and ultimate tensile strength (UTS) are increased. Comparing with that in only ageing condition (T5), the UTS and TYS increased from 365 MPa,285 MPa to 400 MPa,310 MPa, respectively, but the elongation decreased from 7.0% to 3.5%. It has been found that the effects of precipitates on the strength are stronger than that of the growth of grain size.
文摘(January 16-30, 1993) On January 17,Indian Prime Minister Narasimha Rao strengthened his hand by introducing four senior Congress Party members into the cabinet and dropping 14 members of the Council of Ministers.
基金Project(AA17202007) supported by the Special Funding for Innovation-Driven Development of Guangxi Province,China。
文摘The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and differential scanning calorimetry(DSC).The water-cooled and aged alloy exhibits higher strength than the air-cooled and aged alloy;2.5%pre-stretching of tensile deformation exerts little effect on strength of water-cooled and aged alloy but increases that of air-cooled and aged one,and therefore the yield strength reduction rate due to slow quenching decreases from about 3.8%to about 1.0%,reducing quench sensitive effect.For the air-cooled alloy,pre-stretching increases the sizes ofη'strengthening precipitates but also increases their quantity and the ratio of diameter to thickness,resulting in enhanced strengthening and higher strength after aging.The reason has been discussed based on microstructure examination by TEM and DSC.
文摘This paper presents an experimental study on the behavior of circular concrete columns reinforced by BFRP-PVC tubes under uniaxial loading.A total of six specimens were prepared and tested under uniaxial loading.The main parameters varied in the tests were strengthening ratio and strengthening approach of BFRP.The performance,such as failure modes,ultimate bearing capacity and stress-strain curves,was investigated in details and a formula was proposed to predict the compressive ultimate strength.The results show that this kind of confined columns obviously improves the ultimate bearing capacity,and the ultimate bearing capacity increases with the strengthening layers.The formula proposed is applicable and efficient for prediction of the ultimate bearing capacity as well.
基金Project(2008WK2005) supported by the Science and Technology Plan of Hunan Province, China
文摘The effects of low temperature thermo-mechanical treatment (LTTMT) on microstructures and mechanical properties of Ti-6Al-4V (TC4) alloy were studied by optical microscopy (OM), tensile test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results confirm that the strength of TC4 alloy can be improved obviously by LTTMT processing, which combines strain strengthening with aging strengthening. The effect of LTTMT on the alloy depends on the microstructure of the refined and dispersed a+fl phase on the basis of high dislocation density by pre-deformation below recrystallization temperature. The tensile strength decreases with the increase of pre-deformation reduction. The optimal processing parameters of LTTMT for TC4 alloy are as follows: solution treatment at 900 ℃ for 15 min, pre-deformation in the range of 600-700 ℃ with a reduction of 35%, finally aging at 540 ℃ for 4 h followed by air-cooling.
基金Project(U1460204) supported by the Joint Funds of The Iron and Steel Key Project,ChinaProject(2015020180) supported by the Natural Science Foundation of Liaoning Province,ChinaProject(N140704002) supported by the Fundamental Research Funds for the Central Universities,China
文摘Precipitation behavior of Ti in high strength steels was investigated by means of the equilibrium solid solubility theory. The contributions of Ti content to yield strength were calculated. The calculated results were verified by the hot rolling experiment for C–Mn steel and C–Mn–Ti micro alloyed steel, respectively. The research results show that the precipitates are mainly Ti N at the higher temperature. With the decreasing temperature, the proportion of Ti C in precipitates increases gradually. When the temperature drops to 800 °C, Ti C will become predominant for the precipitation of Ti. When Ti content is less than 0.014%(mass fraction), Ti has little influence on the yield strength. When Ti content is in the range of 0.014%–0.03%(mass fraction), the yield strength of Ti micro alloyed steel is greatly increased, which leads to instability of the mechanical properties of the steel. Therefore, the design of Ti content in high strength steels should avoid this Ti content range. When Ti content is higher than 0.03%, the yield strength increases stably. In this experiment, when added Ti content was controlled in the range of 0.03%–0.05%, the contribution to the yield strength of Ti micro alloyed steel can reach about 92.44 MPa.
基金Project(2020JJ2001)supported by Outstanding Youth Scientist Foundation of Hunan Province,ChinaProject(6142912200102)supported by Foundation for National Key Laboratory of Science and Technology on Highstrength Structural Materials,China。
文摘In this paper,15Cr-ODS steels containing 0,1 wt%,2 wt%and 3 wt%Al element were fabricated by combining wet-milling and spark plasma sintering(SPS)methods.The microstructure and mechanical properties of ODS steel were investigated by XRD,SEM,TEM,EBSD and tensile tests.The results demonstrate that the Al addition significantly refines the particle precipitates in the Fe-Cr matrix,leading to the obvious refinement in grain size of matrix and the improvement of mechanical properties.The dispersion particles in ODS steels with Al addition are identified as Al2O3 and Y_(2)Ti_(2)O_(7)nanoparticles,which has a heterogeneous size distribution in the range of 5 nm to 300 nm.Increasing Al addition causes an obvious increase in tensile strength and a decline in elongation.The tensile strength and elongation of 15Cr-ODS steel containing 3 wt%Al are 775.3 MPa and 15.1%,respectively.The existence of Al element improves the corrosion resistance of materials.The ODS steel containing 2 wt%Al shows corrosion potential of 0.39 V and passivation current density of 2.61×10^(−3)A/cm^(2)(1.37 V).This work shows that Al-doped ODS steels prepared by wet-milling and SPS methods have a potential application in structural parts for nuclear system.
基金Projects(51575539, U1837207) supported by the National Natural Science Foundation of ChinaProject(2020RC2002)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2021JJ40774)supported by Natural Science Foundation of Hunan Province,China。
文摘In the present investigation, the relation of pre-ageing temperature and pre-ageing time to mechanical properties was studied, and a model was established to predict the mechanical properties of AA6005 Al alloy. Compared with the experimental results, the deviation of the proposed model was limited to 8.1%, which showed reasonable accuracy of forecasting. It was found that the performance of AA6005 alloy was better at higher pre-ageing temperature with shorter pre-ageing time than that at T6 temper. The microstructure of the alloy was observed by transmission electron microscopy, and the results showed that high dislocation density and precipitate density existed at 160 ℃ and 200 ℃ pre-ageing, which were in good agreement with the model.