期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
An improved cross entropy algorithm for steelmaking-continuous casting production scheduling with complicated technological routes 被引量:8
1
作者 王桂荣 李歧强 王鲁浩 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期2998-3007,共10页
In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to ... In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to optimize the SCC production scheduling(SCCPS) problem. Based on the CE method, a matrix encoding scheme was proposed and a backward decoding method was used to generate a reasonable schedule. To describe the distribution of the solution space, a probability distribution model was built and used to generate individuals. In addition, the probability updating mechanism of the probability distribution model was proposed which helps to find the optimal individual gradually. Because of the poor stability and premature convergence of the standard cross entropy(SCE) algorithm, the improved cross entropy(ICE) algorithm was proposed with the following improvements: individual generation mechanism combined with heuristic rules, retention mechanism of the optimal individual, local search mechanism and dynamic parameters of the algorithm. Simulation experiments validate that the CE method is effective in solving the SCCPS problem with complicated technological routes and the ICE algorithm proposed has superior performance to the SCE algorithm and the genetic algorithm(GA). 展开更多
关键词 steelmaking continuous casting production scheduling complicated technological routes cross entropy POWERCONSUMPTION
在线阅读 下载PDF
Material flow control technology of ironmaking and steelmaking interface 被引量:4
2
作者 黄帮福 田乃媛 +1 位作者 施哲 丁跃华 《Journal of Central South University》 SCIE EI CAS 2014年第9期3559-3567,共9页
In order to achieve higher efficient cohesion match of procedure and equipment between ironmaking and steelmaking interface, the theory of multi-dimensional material flow control was applied to analyze torpedo ladle-i... In order to achieve higher efficient cohesion match of procedure and equipment between ironmaking and steelmaking interface, the theory of multi-dimensional material flow control was applied to analyze torpedo ladle-iron ladle transportation process between blast furnace and basic oxygen furnace. Moreover, basic parameters of material flow were analyzed and optimized, such as time, temperature and material quantity. Based on operating principles of material flow, control methods were optimized, such as product organization mode, scheduling discipline and scheduling plan of hot metal ladle. Finally, the material flow control technology of ironmaking and steelmaking interface was integrated. Satisfactory effects are obtained after applying the technology in practice. The total turnover number of torpedo ladle decreases from 20 to 18, the hot metal temperature of 1# BF torpedo ladle decreases from 36 °C to 19.5 °C, the hot metal temperature of 2# BF torpedo ladle decreases from 36.6 °C to 19.8 °C, the temperature drop of desulfurization hot metal decreases by 4 °C, and the temperature drop of non-desulfurization hot metal decreases by 2.8 °C. Furthermore, the ironmaking and steelmaking interface system will realize high-efficiency control by using this control technology. 展开更多
关键词 ironmaking and steelmaking interface torpedo ladle hot metal ladle material flow control control technology
在线阅读 下载PDF
Thermodynamic calculation on the smelting slag of direct recycling of electric arc furnace stainless steelmaking dust 被引量:6
3
作者 彭兵 彭及 +4 位作者 Janusz A.Kozinski Jonathan Lobel 柴立元 张传福 陈为亮 《Journal of Central South University of Technology》 2003年第1期20-26,共7页
Thermodynamic calculation on the smelting slag of direct recycling of electric arc furnace stainless steelmaking dust was presented. An induction furnace was used to simulate electric arc furnace smelting to recover t... Thermodynamic calculation on the smelting slag of direct recycling of electric arc furnace stainless steelmaking dust was presented. An induction furnace was used to simulate electric arc furnace smelting to recover the metals from the dust. The elements of iron, chromium and nickel in the ingot and the components of metal oxides in the slag were analyzed. The thermodynamic model for FeO Cr 2O 3 MgO SiO 2 slag was set up and the active concentrations of substances in the slag at 1 550 ℃ were determined by thermodynamic calculation according to the experimental data. The results show that the apparent equilibrium constant and quantitative distribution of chromium between slag and steel are unstable and affected by the mass ratios of pellets to start iron and metal reducing agent to the pellets. In order to get satisfactory chromium recovery from the direct recycling of electric arc furnace stainless steelmaking dust, it is important to ensure the mass ratio of pellets to the steel below 0.20 and the mass ratio of metal reducing agent to pellets over 0.18 in practical smelting runs. 展开更多
关键词 THERMODYNAMIC CALCULATION STAINLESS steelmaking DUST reduction RECYCLING
在线阅读 下载PDF
Thermo-analytical study on stainless steelmaking dust 被引量:3
4
作者 彭及 彭兵 +4 位作者 余笛 唐谟堂 Neil Souza Janusz A.Kozinski Jonathan Lobel 《Journal of Central South University of Technology》 2003年第4期301-306,共6页
Thermo-gravimetric analyzer (TGA) was used to determine the thermal behavior of stainless steelmaking dust and FTIR was used to detect the components of off-gas. The TGA results indicate that three mass loss/gain stag... Thermo-gravimetric analyzer (TGA) was used to determine the thermal behavior of stainless steelmaking dust and FTIR was used to detect the components of off-gas. The TGA results indicate that three mass loss/gain stages exist in the thermal process. The mass loss of the dust in the first stage results from the evaporation of moisture and the reaction between dissociated carbon and metal oxides in the dust. The evaporation of moisture within the dust happens at 90-350 ℃ and the formation of carbon dioxide happens at 250-470 ℃. The mass gain of the dust in the second stage results from the oxidation of metals in the dust by the oxygen at 470-950 ℃. The third stage is a slow mass loss process, and some metals in the dust are evaporated into the atmosphere in this stage. The evaporation of metals is carried out mainly at 900-1 200 ℃ and the dust is sintered at high temperature over 1 200 ℃. 展开更多
关键词 thermal analysis STAINLESS steelmaking DUST ENVIRONMENTAL protection
在线阅读 下载PDF
Heating and melting mechanism of stainless steelmaking dust pellet in liquid slag 被引量:1
5
作者 彭及 唐谟堂 +3 位作者 彭兵 余笛 J. A. KOZINSKI 唐朝波 《Journal of Central South University of Technology》 EI 2007年第1期32-36,共5页
The heating and melting mechanisms of the pellets immersed in liquid slag were investigated, and the effect of the pellet heating and the melting conditions were studied. The results show that the dust component in th... The heating and melting mechanisms of the pellets immersed in liquid slag were investigated, and the effect of the pellet heating and the melting conditions were studied. The results show that the dust component in the pellet is melted from the surface and no metallic elements are melted before the dust component, the time for the pellet completely melted is reduced as the iron powder content increases since the metallic iron has high thermal conductivity. These are four stages of heating and melting of pellet in liquid slag, they are the growth and melt of solid slag shell, penetration of liquid slag, dissolving of dust component and melting of reduced metals. The lifetime of the solid slag shell is in the range of 7-16 s and increasing the pre-heating temperature of the pellet and the slag temperature can shorten the slag shell lifetime. The time for the dust component in the pellet to be melted completely is in the range of 20-45 s and increasing the pre-heating temperature, especially in the range of 600-800 ℃, can obviously reduce the melting time. A higher slag temperature can also improve the pellet melting and the melting time is reduced by 10-15 s when the slag temperature is increased from 1 450 to 1 550 ℃. The pellet with higher content of iron powder is beneficial to the melting by improving the heat conductivity. 展开更多
关键词 HEATING MELTING MECHANISM stainless steelmaking dust RECYCLING
在线阅读 下载PDF
Study on stainless steelmaking dust agglomeration
6
作者 彭兵 柴立元 +4 位作者 宋海琛 彭及 闵小波 王云燕 何德文 《Journal of Central South University of Technology》 2004年第1期45-50,共6页
A new direct recycling technology was developed to recover the valuable metals present in the stainless steelmaking dust and protect the environment. The agglomeration behavior of the dust was analyzed to ensure the r... A new direct recycling technology was developed to recover the valuable metals present in the stainless steelmaking dust and protect the environment. The agglomeration behavior of the dust was analyzed to ensure the requirements of the direct recycling. The main characteristics such as strength, leachability, structure and chemical composition of the pellets were investigated. SEM images show a significant amount of porosities affecting the strength of the pellets and the arrangement of particles in the pellets reveals that no recrystallization bonds are formed, resulting in the poor strength of the pellets. When lignosulfonate is applied as the binder for the agglomeration and the green pellets are dried at room temperature for 60 h, the strong pellets can be obtained without milling the dust. The result of leachability tests shows that the pellets agglomerated can not satisfy the regulations set by the environmental protection agency of US. And it will cause some environmental problems in the long storage of pellets. 展开更多
关键词 property of pellet AGGLOMERATION stainless steelmaking dust RECYCLING
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部