期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
利用STARFM模型提高复杂地表下复种指数遥感提取精度 被引量:3
1
作者 张伟 李玮 +4 位作者 陶冠宏 李爱农 覃志豪 雷光斌 陈艺曦 《农业工程学报》 EI CAS CSCD 北大核心 2020年第21期175-185,共11页
复种指数是表征耕地利用程度的重要参数。然而,传统方法存在对影像获取条件要求较高,或在地表复杂区域提取精度较低等问题。高时空分辨率数据融合算法(如Spatial and Temporal Adaptive Reflectance Fusion Model,STARFM)能有效地结合... 复种指数是表征耕地利用程度的重要参数。然而,传统方法存在对影像获取条件要求较高,或在地表复杂区域提取精度较低等问题。高时空分辨率数据融合算法(如Spatial and Temporal Adaptive Reflectance Fusion Model,STARFM)能有效地结合不同数据的优势,有望被应用于提高复杂地表区域复种指数的提取精度。该研究以LandsatTM(Thematic Mapper)及MODIS(Moderate-resolution Imaging Spectroradiometer)为数据源,基于STARFM模型,构建了川东丘陵某区域内2010-2011年的Landsat-like时序NDVI(Normalized Difference Vegetation Index)数据集,进而提取了该区域2010年冬季作物种植区及盐亭县2011年耕地复种指数的空间分布情况。利用目视解译样点(1509个)验证及多尺度(30~4000 m)验证方法,对不同方法提取的2010年冬季作物种植区进行了对比分析。结果表明:1)在30m空间尺度上,基于Landsat影像分类法的总体验证精度为89.73%,高于基于Landsat-like时序NDVI峰值法的54.94%;2)在250~4000 m空间尺度上,基于Landsat-like时序NDVI峰值法的总体验证精度比基于MODIS时序NDVI峰值法高3%~7%。利用统计年鉴及调查样点(73个)数据,对基于新方法提取的盐亭县2011年耕地复种指数结果进行了验证,在县域尺度上其与统计数据非常接近;其与调查样点的总体验证精度达到73.97%。综上,基于数据融合算法提高数据源空间分辨率的方式,不仅能够提高复杂地表复种指数结果的空间精细程度和提取精度,而且在实际应用中也有很好的实用性。 展开更多
关键词 遥感 NDVI 时空数据融合 复种指数 starfm 地表复杂区域
在线阅读 下载PDF
STARFM算法生成湿地类型TM反射率数据的应用评价 被引量:3
2
作者 赵艳丽 李大成 +1 位作者 贾琇明 崔鹏燕 《计算机应用与软件》 CSCD 2016年第3期267-270,283,共5页
当前数据获取条件下,很难直接获得兼具高时间与高空间分辨率的多光谱遥感数据,提出利用STARFM(Spatial and Temporal Adaptive Reflection Fusion Model)算法来合成高时间序列的高空间分辨率数据。该算法在我国地理区域的适用性与预测... 当前数据获取条件下,很难直接获得兼具高时间与高空间分辨率的多光谱遥感数据,提出利用STARFM(Spatial and Temporal Adaptive Reflection Fusion Model)算法来合成高时间序列的高空间分辨率数据。该算法在我国地理区域的适用性与预测精度验证等工作尚未充分展开。为此,以内蒙古呼伦湖湿地自然保护区为研究样区,并借助于Landsat-5 TM(Thematic Mapper)与高时序MODIS反射率产品,利用STARFM算法生成具有高时序特征的TM数据,进而将其与真实TM数据进行对比验证分析。结果表明:STARFM算法能够在空间上保持一定预测精度的条件下,对湿地区域内不同地物类别随时相的变化特征具有较好的预测能力,尤其适用于对反射特征随时相变化较小的湿地区域进行时空拟合或数据预测研究。 展开更多
关键词 呼伦湖湿地 starfm 高时空分辨率 Landsat-5 TM
在线阅读 下载PDF
基于STARFM的草地地上生物量遥感估测研究——以甘肃省夏河县桑科草原为例 被引量:8
3
作者 张玉琢 杨志贵 +6 位作者 于红妍 张强 杨淑霞 赵婷 许画画 孟宝平 吕燕燕 《草业学报》 CSCD 北大核心 2022年第6期23-34,共12页
遥感数据具有实时、动态、大范围等特点,在草地资源监测与管理研究中获得了广泛应用。然而,单一的遥感植被指数无法同时满足草地地上生物量观测中时空分辨率的需求。因此,本研究基于时间序列Landsat NDVI和MODIS NDVI数据,结合时空融合... 遥感数据具有实时、动态、大范围等特点,在草地资源监测与管理研究中获得了广泛应用。然而,单一的遥感植被指数无法同时满足草地地上生物量观测中时空分辨率的需求。因此,本研究基于时间序列Landsat NDVI和MODIS NDVI数据,结合时空融合算法(spatial and temporal adaptive reflectance fusion model,STARFM),生成了2000-2016年高时空分辨率的植被指数数据集(NDVI_(STARFM),时间分辨率为16 d,空间分辨率为30 m,并基于2013-2016年地面实测草地地上生物量数据,构建了夏河县桑科草原高寒草地地上生物量遥感反演模型,分析了2000-2016年研究区草地地上生物量生长状况和变化趋势。结果表明:1)基于NDVI_(STARFM)的最优估测模型为乘幂模型,其R^(2)为0.58,均方根误差(root mean square error,RMSE)为795.62 kg·hm^(-2),模型的表现能力次于Landsat NDVI最优估测模型(R^(2)=0.76,RMSE=634.83 kg·hm^(-2)),而优于MODIS NDVI最优估测模型(R^(2)=0.24,RMSE=937.79 kg·hm^(-2));2)基于NDVI_(STARFM)最优估测模型对各样区草地地上生物量总产的估测精度优于MODIS NDVI而次于Landsat NDVI,总体精度达84.05%;3)2000-2016年来,夏河县研究区草地地上生物量总体呈现增加趋势,其中90%左右的区域年增量大于30 kg·hm^(-2),草地地上生物量呈现减少趋势的区域仅占2.30%。 展开更多
关键词 高寒草甸 starfm 生物量估测模型 时空动态变化 MODIS LANDSAT
在线阅读 下载PDF
基于STARFM模型的遥感影像融合 被引量:4
4
作者 彭检贵 罗为检 +1 位作者 宁小斌 邹泽林 《中南林业调查规划》 2018年第3期32-37,共6页
Landsat遥感数据是区域资源与环境研究的重要数据源,但受时间分辨率及阴雨天气的影响,难以获得大范围的相同时相数据。因此利用时空融合技术,充分发挥多源遥感数据的优势,获取大范围相同时相的遥感数据具有重要的意义。以长沙市为研究区... Landsat遥感数据是区域资源与环境研究的重要数据源,但受时间分辨率及阴雨天气的影响,难以获得大范围的相同时相数据。因此利用时空融合技术,充分发挥多源遥感数据的优势,获取大范围相同时相的遥感数据具有重要的意义。以长沙市为研究区,利用STARFM模型融合生成了具备高空间和高时间分辨率的Landsat影像,并分析了原始影像与融合影像的相关性以及STARFM算法的适应性。结果表明:利用STARFM模型融合生成的融合影像和原始影像的相关性较高,证明STARFM算法的适应性较好,为该算法的适应性研究提供了实证。 展开更多
关键词 数据融合 Landsat8 MODIS starfm
在线阅读 下载PDF
考虑时空融合环境因子的土壤含水率机器学习反演模型优化
5
作者 李瑞平 赵建伟 +3 位作者 王福强 王欢 于欣 苗存立 《农业机械学报》 北大核心 2025年第8期370-379,共10页
植被指数作为构建土壤含水率反演模型的关键要素之一,主要来源于遥感影像的提取。针对高时空分辨率影像难以获取的缺点,采用对象级处理策略的自适应时空融合模型(OL-STARFM)对研究区遥感影像融合,提取融合后的归一化植被指数(NDVI)、地... 植被指数作为构建土壤含水率反演模型的关键要素之一,主要来源于遥感影像的提取。针对高时空分辨率影像难以获取的缺点,采用对象级处理策略的自适应时空融合模型(OL-STARFM)对研究区遥感影像融合,提取融合后的归一化植被指数(NDVI)、地表温度(LST)和植被干旱指数(TVDI)作为环境变量,结合土地利用类型、土壤质地、蒸散量、高程、坡向、坡度、原始影像植被干旱指数(TVDI)、归一化植被指数(NDVI)、地表温度(LST),以及气温、降水量和风速作为建模因子,构建基于多元线性逐步回归(MLSR)、随机森林(RF)和梯度提升机(GBM)3种方法的土壤含水率反演模型,并进行优化分析。研究结果表明:地表温度是影响土壤含水率空间变异性的关键影响因素(R为-0.46),其次为蒸散量(-0.43)、气温(-0.39)、融合后归一化植被指数(0.38)、原始归一化植被指数(0.36)、土地利用类型(0.31)、融合后干旱植被指数(-0.3)、原始干旱植被指数(-0.28)、降水量(0.27)、土壤质地(0.27)、坡向(-0.25)、高程(0.26)、坡度(-0.20)及风速(-0.20);MLSR表现出较强的模型线性处理能力。非线性处理中RF回归模型最稳定,GBM模型则具有最高的精确度,R^(2)为0.910,MAE、MSE及RMSE分别为2.12%、6.89%和2.62%;多元逐步回归方法在土壤含水率反演过程中预测准确率较低,显示出线性模型在处理复杂关系处理时的局限性;OL-STARFM融合方法提取的TVDI和NDVI与土壤含水率的相关系数分别为-0.41和0.38,均高于单一影像提取的植被指数与土壤含水率的相关性,并且有效提高了土壤含水率反演模型的精度,表明该方法在土壤含水率反演模型构建中的可行性,为获取连续的高时空分辨率影像进而有效连续监测土壤含水率提供了理论依据。 展开更多
关键词 土壤含水率 遥感反演模型 时空融合 环境因子 OL-starfm 机器学习算法
在线阅读 下载PDF
喀斯特高原区多源遥感数据时空融合模型适用性分析 被引量:5
6
作者 陈啟英 安裕伦 奚世军 《科学技术与工程》 北大核心 2020年第16期6538-6546,共9页
喀斯特石漠化综合治理防治措施已落实到小流域等较小空间单元内,迫切需要高时空分辨率植被覆盖度等数据支撑相关研究。由于技术和预算的限制,单一传感器难以获取同时满足高空间、高时间分辨率的数据,时空融合技术是目前解决遥感数据缺... 喀斯特石漠化综合治理防治措施已落实到小流域等较小空间单元内,迫切需要高时空分辨率植被覆盖度等数据支撑相关研究。由于技术和预算的限制,单一传感器难以获取同时满足高空间、高时间分辨率的数据,时空融合技术是目前解决遥感数据缺失和“时空矛盾”的重要方法之一。以Landsat8 OLI数据与MODIS数据为数据源,以喀斯特高原20 km×20 km区域为实验区,采用时空自适应反射融合模型(spatial and temporal adaptive rcflectance fusion model,STARFM)、增强型时空自适应反射融合模型(enhanced spatial and temporal adaptive rcflectance fusion model,ESTARFM)、灵活的时空数据融合模型(flexible spatiotemporal data fusion,FSDAF)模型三种模型融合生成高时空分辨率数据,分析三种模型在喀斯特高原区的应用能力。结果表明:STARFM、ESTARFM、FSDAF三种模型的融合影像与真实影像的R均高于0.6,ESTARFM模型的融合影像与真实影像的相关性最高,空间细节最为清晰,层次性更明显;ESTARFM模型在地表破碎,异质性较高的喀斯特高原区具有较好的适用能力。 展开更多
关键词 喀斯特高原 时空融合 starfm Estarfm FSDAF
在线阅读 下载PDF
基于时序NDVI数据的洞庭湖区湿地植被类型信息提取 被引量:5
7
作者 刘晓农 邢元军 罗鹏 《林业资源管理》 北大核心 2017年第4期103-109,共7页
洞庭湖湿地是我国及国际重要的湖泊湿地,基于遥感时空融合模型,通过融合高时间分辨率的MODIS数据与中等空间分辨率的Landsat数据,得到时序Landsat NDVI数据,并利用时序Landsat NDVI数据对湿地植被信息进行提取。研究结果表明,该方法能... 洞庭湖湿地是我国及国际重要的湖泊湿地,基于遥感时空融合模型,通过融合高时间分辨率的MODIS数据与中等空间分辨率的Landsat数据,得到时序Landsat NDVI数据,并利用时序Landsat NDVI数据对湿地植被信息进行提取。研究结果表明,该方法能够有效提取研究区湿地植被类型,总体分类精度与Kappa系数分别为91.52%与0.85,较单时相Landsat8 OLI光谱影像总体分类精度与Kappa系数分别提高了4.16%和0.03。苔草沼泽、芦苇沼泽、杨树林沼泽和水稻田几种湿地植被的分类精度提高较为明显,用户精度分别提高了2.35%,0.67%,10.47%和4.75%,生产者精度则分别提高了3.57%,2.31%,10.11%和6.21%。研究结果可为阴雨天气较多的南方地区的湿地信息提取提供有效的技术和方法。 展开更多
关键词 时序序列 NDVI starfm 洞庭湖区 湿地植被
在线阅读 下载PDF
基于深度学习与超分辨率重建的遥感高时空融合方法 被引量:6
8
作者 张永梅 滑瑞敏 +1 位作者 马健喆 胡蕾 《计算机工程与科学》 CSCD 北大核心 2020年第9期1578-1586,共9页
针对遥感影像的“时空矛盾”,提出一种改进STARFM的遥感高时空融合方法。利用SRCNN对低分辨率影像进行超分辨率重建,由于所融合的2组影像分辨率差距过大,网络训练困难,先将2组影像均采样至某一中间分辨率,使用高分辨率影像作为低分辨率... 针对遥感影像的“时空矛盾”,提出一种改进STARFM的遥感高时空融合方法。利用SRCNN对低分辨率影像进行超分辨率重建,由于所融合的2组影像分辨率差距过大,网络训练困难,先将2组影像均采样至某一中间分辨率,使用高分辨率影像作为低分辨率影像的先验知识进行SRCNN重建,再将得到的中间分辨率影像重采样后以原始高分辨率影像作为先验知识进行第2次SRCNN重建,得到的最终重建图像相比原先使用插值法重采样所得图像,在PSNR和SSIM上均有提升,缓解了传感器差异所造成的系统误差。STARFM融合方法在筛选相似像元与计算权重时均使用专家知识提取人工特征,基于STARFM时空融合的基本思想,以SRCNN作为基本框架自动提取特征,实验结果表明,其MSE值相比原方法更低,进一步提高了遥感时空融合的质量,有利于充分利用遥感影像。 展开更多
关键词 时空融合 改进starfm SRCNN 自动特征提取
在线阅读 下载PDF
基于时空融合的NDVI时序生成技术在冬小麦监测中的应用 被引量:5
9
作者 李胜林 李大成 +1 位作者 韩启金 龙小祥 《太原理工大学学报》 CAS 北大核心 2019年第1期69-75,共7页
高时空分辨率归一化植被指数(normalized difference vegetation index,NDVI)数据对于冬小麦的动态监测具有重要意义,而高分一号卫星的不足之处是无法获得时间序列数据。为了解决上述问题,以河南省东北部为实验研究区,以高分一号卫星16... 高时空分辨率归一化植被指数(normalized difference vegetation index,NDVI)数据对于冬小麦的动态监测具有重要意义,而高分一号卫星的不足之处是无法获得时间序列数据。为了解决上述问题,以河南省东北部为实验研究区,以高分一号卫星16m分辨率的多光谱宽覆盖GF-1/WFV(Gaofen-1satellite/wide field of view)数据与MODIS地表反射率产品MOD09Q1数据为数据源,采用STARFM (spatial and temporal adaptive reflectance fusion model)时空融合算法,对冬小麦出苗生长期、越冬期、返青-拔节期、抽穗期、成熟期等5个不同物候期的数据进行分析,并最终生成步长为8d的GF-1/WFV NDVI时间序列数据(即预测NDVI).结果显示:5个不同物候期的预测GF-1/WFV NDVI与实际GF-1/WFV NDVI的相关系数分别为0.695 9,0.840 4,0.892 1,0.897 0,0.632 9;预测GF-1/WFV NDVI时间序列数据与实际MOD09Q1NDVI数据具有高度的一致性。 展开更多
关键词 NDVI 时空融合 starfm MODIS GF-1 冬小麦 物候期
在线阅读 下载PDF
遥感时空融合中单/双时相辅助数据的适用性分析 被引量:1
10
作者 吴金橄 程青 +2 位作者 李慧芳 吴鹏海 沈焕锋 《地理与地理信息科学》 CSCD 北大核心 2017年第5期9-15,共7页
遥感时空信息融合需要其他时相的数据作为辅助,而现有的时空融合应用往往随机选用单时相或双时相辅助数据,从而导致融合结果并非最佳。单/双时相辅助数据中,哪种能获得更优的融合结果?如何选用单/双时相辅助数据进行最佳融合?这是目前... 遥感时空信息融合需要其他时相的数据作为辅助,而现有的时空融合应用往往随机选用单时相或双时相辅助数据,从而导致融合结果并非最佳。单/双时相辅助数据中,哪种能获得更优的融合结果?如何选用单/双时相辅助数据进行最佳融合?这是目前研究中尚未探究的问题。针对此问题,该文对单/双时相辅助数据的融合结果进行了系统比较,总结了单/双时相辅助数据在不同时相变化特征下的适用规律。结果发现,当存在多个可供选择的辅助时相时,若预测时段内时相变化幅度基本均等,应优先选用双时相辅助数据进行融合;若时相变化幅度明显不等,应优先选用差异较小的单时相辅助数据进行融合。此外,为深入揭示时相差异与最优辅助时相的关系,该文对其进行了量化研究,提出了一种用于选取最优辅助时相的经验性方法。 展开更多
关键词 单/双时相 辅助时相 时空融合 starfm STNLFFM
在线阅读 下载PDF
3种时空融合算法在洪水监测中的适用性研究 被引量:7
11
作者 石晨烈 王旭红 +2 位作者 张萌 刘状 祝新明 《国土资源遥感》 CSCD 北大核心 2020年第2期111-119,共9页
洪水灾害的遥感监测依赖于高时空分辨率影像,但目前中高空间分辨率的遥感影像受卫星回访周期及天气的影响,限制了在洪水监测中的应用。为此,提出融合MODIS和Landsat影像生成高时空分辨率影像来监测洪水灾害。以Gwydir和New Orleans 2地... 洪水灾害的遥感监测依赖于高时空分辨率影像,但目前中高空间分辨率的遥感影像受卫星回访周期及天气的影响,限制了在洪水监测中的应用。为此,提出融合MODIS和Landsat影像生成高时空分辨率影像来监测洪水灾害。以Gwydir和New Orleans 2地区为研究区,利用时空自适应反射率融合模型(spatial and temporal adaptive reflectance fusion model,STARFM)、时空反射率解混模型(spatial and temporal reflectance unmixing model,STRUM)和灵活的时空融合模型(flexible spatiotemporal data fusion,FSDAF)3种流行算法融合MODIS和Landsat影像,获得Landsat融合影像,采用支持向量机(support vector machine,SVM)对融合影像分类来提取洪水信息,并对其结果进行精度评估。实验结果表明,3种时空融合算法能够有效应用到洪水监测中,且FSDAF算法融合结果在2个研究区都优于STARFM和STRUM。在Gwydir研究区,STARFM,STRUM和FSDAF 3种算法洪水分类总体精度分别为0.89,0.90和0.91,Kappa系数分别为0.63,0.64和0.67;在New Orleans研究区,3种融合算法洪水分类精度为0.90,0.89和0.91,Kappa系数分别为0.77,0.76和0.81。此研究表明时空融合算法能够有效应用到洪水监测中。 展开更多
关键词 时空融合 洪水监测 高时空分辨率 starfm模型 STRUM模型 FSDAF模型
在线阅读 下载PDF
数据融合技术在提高NPP估算精度中的应用 被引量:5
12
作者 黄登成 张丽 +1 位作者 尹晓利 王昆 《计算机工程与应用》 CSCD 2014年第22期193-198,232,共7页
针对现有遥感数据不能同时满足在时间和空间上精确监测植被动态变化的问题,提出利用时空适应性反射率融合模型(STARFM)的方法对MODIS-NDVI和TM-NDVI影像数据进行融合处理获得30 m较高时空分辨率的融合NDVI影像,进而将多种尺度的MODIS-N... 针对现有遥感数据不能同时满足在时间和空间上精确监测植被动态变化的问题,提出利用时空适应性反射率融合模型(STARFM)的方法对MODIS-NDVI和TM-NDVI影像数据进行融合处理获得30 m较高时空分辨率的融合NDVI影像,进而将多种尺度的MODIS-NDVI和融合NDVI数据分别输入到CASA模型,对锡林浩特地区进行植被净初级生产力(NPP)的多尺度估算。将不同尺度的NPP估算结果与地上生物量地面实测值进行验证比较,结果表明:随着输入NDVI空间分辨率的提高,NPP估算值与实测地上生物量之间的相关性也逐渐增大,r最大值达到了0.915。此外以融合NDVI影像作为输入数据之一的NPP估算值与实测地上生物量的相关性均比未融合NDVI的相关性高,说明融合NDVI估算NPP的效果较未融合NDVI好,并且以融合NDVI影像作为模型输入数据可提高NPP估算精度。 展开更多
关键词 数据融合 时空适应性反射率融合模型 CASA模型 净初级生产力
在线阅读 下载PDF
基于时空融合技术的森林火灾遥感动态监测 被引量:14
13
作者 黄武彪 栾海军 李大成 《自然灾害学报》 CSCD 北大核心 2022年第1期265-276,共12页
针对单一时空融合方法或使用单一中等空间分辨率影像(如Landsat影像)和MODIS影像时空融合的不足,本文提出综合利用经典的STARFM算法、基于地物内组分时相变化模型的地表反射率时空融合算法,联合使用多种空间分辨率更优(≤30 m)的传感器... 针对单一时空融合方法或使用单一中等空间分辨率影像(如Landsat影像)和MODIS影像时空融合的不足,本文提出综合利用经典的STARFM算法、基于地物内组分时相变化模型的地表反射率时空融合算法,联合使用多种空间分辨率更优(≤30 m)的传感器影像,以“时间最邻近及空间分辨率优先”为原则对传统单一中等空间分辨率影像预测周期(如Landsat影像为16天)进行分段独立预测,并优化组合两种预测方法的预测结果,进而获取更为精确的逐日中等空间分辨率预测影像。基于上述方法所得结果,可应用于森林火灾监测场景中。以四川凉山木里县3·30森林大火为例,综合利用MOD09GA、Landsat8 OLI、Sentinel-2、GF-1 WFV遥感影像数据进行实验研究,基于预测所得逐日中等空间分辨率影像提取火灾指标因子(燃烧面积指数和归一化燃烧指数),分析森林火灾演化态势。结果表明:(1)多类型中高空间分辨率遥感影像的综合利用,有利于解决传统单一中等空间分辨率影像预测周期跨度过长、总体精确度低的问题,可获取更为精确的逐日中等空间分辨率预测影像;(2)两种算法在不同类型遥感数据融合应用中各有其局限性,两种方法联立使用具有理论价值与实际意义;(3)基于时空融合影像分析火灾演化态势时,归一化燃烧指数计算结果更敏感、更有效。研究认为,基于时空融合技术的森林火灾遥感动态监测具有可行性,具有进一步深入研究的价值与意义。 展开更多
关键词 森林火灾 遥感动态监测 时空融合 时空自适应反射率融合模型 地物组分
在线阅读 下载PDF
草原高时空分辨率NDVI重构模型的精度分析
14
作者 张敏 曹云刚 +3 位作者 杨秀春 陈凯 潘梦 郭剑 《地理与地理信息科学》 CSCD 北大核心 2020年第1期35-43,共9页
多源遥感影像时空信息融合产生的高时空分辨率影像是遥感地学应用的重要数据源,利用时空融合算法形成的高时空分辨率植被指数数据集对于植被动态监测具有重要意义。为了在草原植被监测中更好地应用时空融合算法,该文利用2013-2016年间... 多源遥感影像时空信息融合产生的高时空分辨率影像是遥感地学应用的重要数据源,利用时空融合算法形成的高时空分辨率植被指数数据集对于植被动态监测具有重要意义。为了在草原植被监测中更好地应用时空融合算法,该文利用2013-2016年间内蒙古自治区呼伦贝尔和锡林郭勒地区多期Landsat8和MODIS影像进行高时空分辨率NDVI植被指数计算,定量评价了STARFM(Spatial and Temporal Adaptive Reflectance Fusion Model)、CDSTARFM(Combination of Downscaling Mixed Pixel Algorithm and Spatial and Temporal Adaptive Reflectance Fusion Model)和STDFM(Spatial and Temporal Data Fusion Model)3种常用时空融合算法在不同融合策略下的精度。研究结果表明,基于NDVI融合策略的STARFM算法更适合草原地区高时空分辨率NDVI数据的构建。 展开更多
关键词 时空数据融合 草原植被 ST ARFM CDST ARFM ST DFM
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部