期刊文献+
共找到5,904篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical Simulation of the Pitting Corrosion Behavior of Stainless Steel Bellows Influenced by Varying Liquid Film Thicknesses
1
作者 Lu-Jun Ren Guo-Min Li +2 位作者 Zhen-Xiao Zhu Hai-Yan Xiong Bing Li 《电化学(中英文)》 北大核心 2025年第7期37-51,共15页
To advance the understanding of the corrosion behavior of stainless steel bellows in marine atmospheric environments and enhance the precision of service life predictions,this study employs finite element simulations ... To advance the understanding of the corrosion behavior of stainless steel bellows in marine atmospheric environments and enhance the precision of service life predictions,this study employs finite element simulations to investigate the pitting corrosion rates and pit morphologies of bellows peaks and troughs under varying electrolyte film thicknesses.The model incorporates localized electrochemical reactions,oxygen concentration,and homogeneous solution reactions.For improved computational accuracy,the fitted polarization curve data were directly applied as nonlinear boundary conditions on the electrode surface via interpolation functions.Simulation results reveal that the peak regions exhibit faster corrosion rates than the trough regions.With increasing electrolyte film thickness(from 10μm to 500μm),corrosion rates at both peaks and troughs decrease progressively,and after 120 hours of simulation,the maximum corrosion rate at the peaks declines from 0.720 mm/a to 0.130 mm/a,and at the troughs from 0.520 mm/a to 0.120 mm/a,with the disparity in corrosion rates diminishing over time.Furthermore,as corrosion progresses,pits propagate deeper into the substrate,exhibiting both vertical penetration and lateral expansion along the passive film interface,ultimately breaching the substrate.This research offers valuable insights into designing corrosion mitigation strategies for stainless steel bellows in marine environments. 展开更多
关键词 Finite element method Pitting corrosion stainless steel bellows Electrolyte film thickness
在线阅读 下载PDF
Tetrahedral Amorphous Carbon Films for Stainless Steel Bipolar Plates of Proton Exchange Membrane Fuel Cells
2
作者 XIA Zhengwei WU Yucheng +3 位作者 ZHANG Haibin ZHANG Xinfeng LI Canmin LIU Dongguang 《陶瓷学报》 北大核心 2025年第5期918-925,共8页
[Background and purposes]Proton exchange membrane fuel cells(PEMFCs),which convert hydrogen energy directly into electrical energy and water,have received overwhelming attention,owing to their potential to significant... [Background and purposes]Proton exchange membrane fuel cells(PEMFCs),which convert hydrogen energy directly into electrical energy and water,have received overwhelming attention,owing to their potential to significantly reduce energy consumption,pollution emissions and reliance on fossil fuels.Bipolar plates are the major part and key component of PEMFCs stack,which provide mechanical strength,collect and conduct current segregate oxidants and reduce agents.They contribute 70-80%weight and 20-30%cost of a whole stack,while significantly affecting the power density.There are three types plates,including metal bipolar plate,graphite bipolar plate and composite bipolar plate.Stainless steel bipolar plates,as one of metal bipolar plate,exhibit promising manufacturability,competitive cost and durability among various metal materials.However,stainless steel would be corroded in the harsh acid(pH 2-5)and humid PEMFCs environment,whereas the leached ions will contaminate the membrane.In addition,the passivated film formed on the surface will increase the interfacial contact resistance(ICR).In order to improve the corrosion resistance and electrical conductivity of steel bipolar plates,surface coatings are essential.Metal nitride coatings,metal carbide coatings,polymer coatings and carbon-based coatings have been introduced in recent years.Carbon-based coatings,mainly including a-C(amorphous Carbon),Ta-C(Tetrahedral amorphous carbon)and DLC(diamond-like carbon),have attracted considerable attention from both academia and industry,owing to their superior performance,such as chemical inertness,mechanical hardness and electrical conductivity.However,Ta-C films as protective coating of PEMFCs have been rarely reported,due to the difficulty in production for industrial application.In this paper,multi-layer Ta-C composite films were produced by using customized industrial-scale vacuum equipment to address those issues.[Methods]Multiple layered Ta-C coatings were prepared by using PIS624 equipment,which assembled filtered cathodic arc evaporation,ion beam and magnetron sputtering into one equipment,while SS304 and silicon specimens were used as substrate for testing and analysis.Adhesion layer and intermediate layer were deposited by using magnetron sputtering at deposition temperature of 150℃and pressure of 3×10^(−1) Pa,while the sputtering current was set to be 5 A and bias power to be 300 V.The Ta-C layer was coated at arc current of 80-100 A,bias voltage of 1500 V and gas flow of 75 sccm.A scanning electron microscope(CIQTEK SEM3200)was used to characterize surface morphology,coating structure and cross-section profile of the coatings.Raman spectrometer(LabRam HR Evolution,HORIBA JOBIN YVON)was used to identify the bonding valence states.Electrochemical tests were performed by using an electrochemical work station(CHI760,Shanghai Chenhua Instrument Co.,Ltd.),with the traditional three electrode system,where saturated Ag/AgCl and platinum mesh were used as the reference electrode and counter electrode,respectively.All samples were mounted in plastic tube and sealed with epoxy resin,with an exposure area of 2.25 cm^(2),serving as the working electrode.Electrochemical measurements were carried out in simulated PEMFCs cathode environment in 0.5 mol·L^(−1) H_(2)SO_(4)+5 ppm F−solution,at operating temperature of 70℃.As the cathode environment was harsher than the anode environment,all the samples are stabilized at the open-circuit potential(OCP)for approximately 30 min before the EIS measurements.ICR between bipolar plates and GDL was a key parameter affecting performance of the PEMFCs stack.The test sample sandwiched between 2 pieces of carbon paper(simulate gas diffusion layer,GDL)was placed between 2 gold-plated copper electrodes at a compaction pressure of 1.4 MPa,which was considered to be the conventional compaction pressure in the PEMFCs.Under the same conditions,the resistance of a single carbon paper was measured as well.The ICR was calculated according to the formula ICR=1/2(R2−R1)×S,where S was the contact area between GDL and coated stainless steel BPPs.All data of ICR were measured three times for averaging.[Results]The coatings deposited by filtered cathodic arc technology were compact and smooth,which reduced coating porosity and favorable to corrosion resistance.The coating thickness of adhesion and intermediate layers were 180 nm,while the protective Ta-C coating thickness was about 300 nm,forming multiple coating to provide stronger protection for metal bipolar plates.Cr,Ti,Nb and Ta coatings were selected as adhesion layers for comparison.According to electrochemical test,Ta and Nb coatings have higher corrosion resistance.However,Ta and Nb materials would be costly when they are used for mass production.Relatively,Cr and Ti materials were cost effective.Hence,a comprehensive assessment was indispensable to decide the materials to be selected as adhesion layer.Ta-TiN and Ti-TiN combined adhesion and intermediate layer exhibited stronger corrosion resistance,with the corrosion current to be less than 10^(−6) A·cm^(−2).Ta-C protective coating deposited by using filtered cathodic arc technology indicated displayed higher corrosion resistance,with the average corrosion density to be about 1.26×10^(−7) A·cm^(−2).Ta-C coating also shown larger contact angle,with the highest hydrophobicity,which was one of the important advantages for Ta-C,in terms of corrosion resistance.According to Raman spectroscopy,the I(D)/I(G)=549.8/1126.7=0.487,with the estimated fraction of sp^(3) bonding to be in the range of 5154%.The intermediate layer TiN has higher conductivity than the CrN layer.Considering cost,corrosion performance and ICR result,the Ti-TiN layer combination is recommended for industrial scale application.[Conclusions]Multiple layer coating structure of Ta-C film had stronger corrosion resistance;with more than 50%sp^(3) content,while it also had larger water contact angle and higher corrosion resistance than DLC film.The filtered arcing deposition technology was able to make the film to be more consistent and stable than normal arcing technology in terms of the preparation of Ta-C.The coating displayed corrosion density of 1.26×10^(−7) A·cm^(−2) and ICR of less than 5 mΩ·cm^(2),far beyond technical target of 2025 DOE(US Department of Energy).This indicated that the mass-production scale coating technology for PEMFC bipolar plates is highly possible. 展开更多
关键词 PEMFC stainless steel bipolar plates tetrahedral amorphous carbon(Ta-C)films corrosion resistance interfacial contact resistance multiple layers coating
在线阅读 下载PDF
Growth kinetics of borided 316 L stainless steel obtained by selective laser melting
3
作者 DEMIRCI Selim TÜNÇAY Mehmet Masum 《Journal of Central South University》 2025年第2期332-349,共18页
Selective laser melting(SLM)is a cost-effective 3 D metal additive manufacturing(AM)process.However,AM 316 L stainless steel(SS)has different surface and microstructure properties as compared to conventional ones.Bori... Selective laser melting(SLM)is a cost-effective 3 D metal additive manufacturing(AM)process.However,AM 316 L stainless steel(SS)has different surface and microstructure properties as compared to conventional ones.Boriding process is one of the ways to modify and increase the surface properties.The aim of this study is to predict and understand the growth kinetic of iron boride layers on AM 316 L SS.In this study,the growth kinetic mechanism was evaluated for AM 316 L SS.Pack boriding was applied at 850,900 and 950℃,each for 2,4 and 6 h.The thickness of the boride layers ranged from(1.8±0.3)μm to(27.7±2.2)μm.A diffusion model based on error function solutions in Fick’s second law was proposed to quantitatively predict and elucidate the growth rate of FeB and Fe_(2)B phase layers.The activation energy(Q)values for boron diffusion in FeB layer,Fe_(2)B layer,and dual FeB+Fe_(2)B layer were found to be 256.56,161.61 and 209.014 kJ/mol,respectively,which were higher than the conventional 316 L SS.The findings might provide and open new directions and approaches for applications of additively manufactured steels. 展开更多
关键词 316L stainless steel BORIDING KINETICS additive manufacturing selective laser melting
在线阅读 下载PDF
Numerical and experimental investigation on the formability of stainless steel-copper composites during micro deep drawing
4
作者 QI Yan-yang MA Xiao-guang +6 位作者 JIANG Zheng-yi MA Li-nan WANG Zhi-hua ZHOU Cun-long HASAN Mahadi DOBRZAŃSKI Leszek A. ZHAO Jing-wei 《Journal of Central South University》 2025年第4期1237-1251,共15页
In the present study,two-layered stainless steel-copper composites with a thickness of 50μm were initially subjected to annealing at 800,900 and 1000℃for 5 min,respectively,to achieve diverse microstructural feature... In the present study,two-layered stainless steel-copper composites with a thickness of 50μm were initially subjected to annealing at 800,900 and 1000℃for 5 min,respectively,to achieve diverse microstructural features.Then the influence of annealing temperature on the formability of stainless steel-copper composites and the quality of micro composite cups manufactured by micro deep drawing(MDD)were investigated,and the underlying mechanism was analyzed.Three finite element(FE)models,including basic FE model,Voronoi FE model and surface morphological FE model,were developed to analyze the forming performance of stainless steel-copper composites during MDD.The results show that the stainless steel-copper composites annealed at 900℃possess the best plasticity owing to the homogeneous and refined microstructure in both stainless steel and copper matrixes,and the micro composite cup with specimen annealed at 900℃exhibits a uniform wall thickness as well as high surface quality with the fewest wrinkles.The results obtained from the surface morphological FE model considering material inhomogeneity and surface morphology of the composites are the closest to the experimental results compared to the basic and Voronoi FE model.During MDD process,the drawing forces decrease with increasing annealing temperature as a consequence of the strength reduction. 展开更多
关键词 micro deep drawing annealing temperature stainless steel-copper composites FORMABILITY WRINKLING finite element method
在线阅读 下载PDF
Effect of post weld heat treatment on grain boundary character distribution and corrosion resistance of friction stir welded armourgrade nickel and molybdenum-free high-nitrogen austenitic stainless steel
5
作者 Arun Kumar Gurrala Raffi Mohammed G Madhusudhan Reddy 《Defence Technology(防务技术)》 2025年第9期246-261,共16页
This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-... This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-and molybdenum-free high-nitrogen austenitic stainless steel(HNASS).FSW at 400 rpm and 30 mm/min resulted in finer grains(4.18μm)and higher coincident site lattice(CSL)boundaries(32.3%)at the top of the stir zone(SZ)due to dynamic recrystallization(DRX).PWHT at 900℃for 1 h led to grain coarsening(12.91μm the bottom SZ)but enhanced CSL boundaries from 24.6%to 30.2%,improving grain boundary stability.PWHT reduced the kernel average misorientation(KAM)by 14.9%in the SZ-top layer and 20.4%in the SZ-bottom layer,accompanied by a 25%decrease in hardness in the SZ-top layer and 26.7%in the SZ-bottom layer,indicating strain recovery and reduced dislocation density.Potentiodynamic polarization tests(PDP)showed a 18%increase in pitting potential and a 76%reduction in corrosion rate after PWHT.The improvement in corrosion resistance is attributed to the increase inΣ3 twin boundaries,which enhance grain boundary stability and reduce susceptibility to localized corrosion.These findings highlight the role of PWHT in refining the microstructure and strengthening corrosion resistance,making HNASS a promising material for demanding applications. 展开更多
关键词 Nickel and molybdenum free high-nitrogen austenitic stainless steel Friction stir welding Post-weld heat treatment Electron backscattered diffraction Microstructural gradients Pitting corrosion resistance Coincident site lattice Grain boundary characteristic distribution
在线阅读 下载PDF
Laser-assisted water jet machining of high quality micro-trap structures on stainless steel surfaces 被引量:1
6
作者 LIU Li YAO Peng +3 位作者 CHU Dong-kai XU Xiang-yue QU Shuo-shuo HUANG Chuan-zhen 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第6期1476-1488,共13页
Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while exte... Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while extending their lifespan.This paper explores the application of laser-assisted water jet technology in constructing high-quality micro-trap structures on 316L stainless steel,a key material in accelerator manufacturing.The study systematically analyzes the impact of various parameters such as laser repetition frequency,pulse duration,average power,water jet pressure,repeat times,nozzle offset,focal position,offset distance between grooves,and processing speed on the surface morphology of stainless steel.The findings reveal that micro-groove depth increases with higher laser power but decreases with increasing water jet pressure and processing speed.Interestingly,repeat times have minimal effect on depth.On the other hand,micro-groove width increases with higher laser power and repeat times but decreases with processing speed.By optimizing these parameters,the researchers achieved high-quality pound sign-shaped trap structure with consistent dimensions.We tested the secondary electron emission coefficient of the"well"structure.The coefficient is reduced by 0.5 at most compared to before processing,effectively suppressing secondary electron emission.These results offer indispensable insights for the fabrication of micro-trap structures on material surfaces.Laser-assisted water jet technology demonstrates considerable potential in mitigating SEE on metal surfaces. 展开更多
关键词 laser-assisted water jet 316L stainless steel micro-trap structures "well"structure surface morphology secondary electron emission(SEE) groove depth groove width
在线阅读 下载PDF
Understanding of tribocorrosion and corrosion characteristics of 304L stainless steel in hot concentrated nitric acid solution
7
作者 LIU Zheng ZHANG Lian-min +3 位作者 LIU Chen-chen TAN Ke-di MA Ai-li ZHENG Yu-gui 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3657-3673,共17页
Spent fuel reprocessing plays a pivotal role in achieving efficient recycling of nuclear fuel.Among thedifferent forms of failure encountered in spent fuel reprocessing,tribocorrosion stands out as a critical concern.... Spent fuel reprocessing plays a pivotal role in achieving efficient recycling of nuclear fuel.Among thedifferent forms of failure encountered in spent fuel reprocessing,tribocorrosion stands out as a critical concern.Herein,the tribocorrosion behavior,as well as the corrosion behavior,of 304L stainless steel(SS)in high-temperatureconcentrated nitric acid was investigated.The results indicated that 304L SS formed a thin(1.54 nm)and stable passivefilm on the surface,imparting high resistance to nitric acid corrosion.Meanwhile,it was found that the synergistic effectbetween corrosion and wear accounted for a high total tribocorrosion weight loss of over 85%,implying the dominantrole of the synergistic effect in the tribocorrosion process.Furthermore,the wear of 304L SS in deionized water revealedboth abrasive and adhesive wear characterizations,whereas the tribocorrosion in nitric acid only exhibited abrasive wearfeature.Eventually,the tribocorrosion and corrosion models of 304L SS in hot concentrated nitric acid were proposedbased on the comprehensive experimental findings. 展开更多
关键词 304L stainless steel TRIBOCORROSION CORROSION hot nitric acid mechanism model
在线阅读 下载PDF
Prediction of Hot Deformation Behavior of 7Mo Super Austenitic Stainless Steel Based on Back Propagation Neural Network
8
作者 WANG Fan WANG Xitao +1 位作者 XU Shiguang HE Jinshan 《材料导报》 EI CAS CSCD 北大核心 2024年第17期165-171,共7页
The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformati... The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation. 展开更多
关键词 7Mo super austenitic stainless steel hot deformation behavior flow stress BP-ANN Arrhenius constitutive equation
在线阅读 下载PDF
Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties 被引量:16
9
作者 Raffi Mohammed G.Madhusudhan Reddy K.Srinivasa Rao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第2期59-71,共13页
High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grad... High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance.Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties.The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding(SMAW), gas tungsten arc welding(GTAW), electron beam welding(EBW) and friction stir welding(FSW) processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds.Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds.Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains. 展开更多
关键词 High nitrogen AUSTENITIC stainless steel(HNS) Shielded metal ARC WELDING (SMAW) Gas tungsten ARC WELDING (GTAW) Electron beam WELDING (EBW) Friction stir WELDING (FSW)
在线阅读 下载PDF
Optimization of gas tungsten arc welding parameters for the dissimilar welding between AISI 304 and AISI 201 stainless steels 被引量:5
10
作者 Wichan Chuaiphan Loeshpahn Srijaroenpramong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第2期170-178,共9页
This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 2... This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 25817 quality level B, pitting corrosion potential of the weld metal of not less than that of the AISI304 base metal and a ratio of delta-ferrite in austenite matrix of the weld metal of not lower than 3%.Such a ratio is a criterion widely accepted to protect the weld metal from solidification cracking. At the welding current of 75 A and by using pure argon as a shielding gas 0 to 8 vol.% and applying a welding speed in the range of 2-3.5 mm·s^(-1) was found to give a complete weld bead with an increased depthper-width ratio(promote weldability). For welding speed in the range of 3 and 3.5 mm·s^(-1)(promote corrosion resistance). Increasing the welding speed in such a range decreased the amount of delta-ferrite in the austenite matrix, and increased the pitting corrosion potential of the weld metal to be 302 mV_(SCE).This value was still lower than the pitting corrosion potential of the AISI 304 base metal. Mixing nitrogen in argon shielding gas increased the nitrogen content in the weld. The optimum condition was found when using a welding speed of 3 mm· s^(-1) and mixing 1 vol.% of nitrogen in the argon shielding gas(promote weldability and corrosion resistance). Pitted areas after potentiodynamic test were observed in the austenite in which its Cr content was relatively low. 展开更多
关键词 Dissimilar WELDMENT AISI 304 stainless STEEL AISI 201 stainless STEEL Gas tungsten arc welding(GTAW) Nitrogen Corrosion BEHAVIOR Mechanical BEHAVIOR
在线阅读 下载PDF
Characterization and recycling of nickel- and chromium-contained pickling sludge generated in production of stainless steel 被引量:13
11
作者 李小明 谢庚 +2 位作者 HOJAMBERDIEV Mirabbos 崔雅茹 赵俊学 《Journal of Central South University》 SCIE EI CAS 2014年第8期3241-3246,共6页
Pickling sludge generated during the neutralization of pickling wastewater with calcium hydroxide in stainless steel pickling process was characterized using X-ray fluorescence spectrometry, X-ray diffractometry, scan... Pickling sludge generated during the neutralization of pickling wastewater with calcium hydroxide in stainless steel pickling process was characterized using X-ray fluorescence spectrometry, X-ray diffractometry, scanning electron microscopy, thermogravimetry and differential scanning calorimetry, etc. The major compositions of pickling sludge are CaF2, CaSO4, Me(OH), (M: Fe, Cr, Ni), and the content of CaF2 is high in the sludge. The melting point of pickling sludge is about 1350℃ and the viscosity is about 0.14 Pa.s at 1450 ℃, which are comparatively lower than those of normal refining slag. After heat treatment, the contents of sulfur and fluorine in the pickling sludge were reduced, confirming the thermal decomposition of sulfate in the sludge. Fluorine in the sludge is reduced by the gaseous SiF4 and A1F3 generated through the reactions of CaF2 with SiO2 and Al2O3. The preliminary results from the reduction test indicate that the sulfur content in the steel is not affected by the presence of sulfur in the sludge. The recovery of nickel is about 40%, and the chromium content changes marginally due to the protective atmosphere under the reduction condition of chromic oxide. The pickling sludge is a potential auxiliary material for the production of stainless steel. 展开更多
关键词 stainless steel pickling sludge CHARACTERIZATION RECYCLING SULFUR FLUORINE
在线阅读 下载PDF
Optimization of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds 被引量:5
12
作者 G.MAGUDEESWARAN Sreehari R.NAIR +1 位作者 L.SUNDAR N.HARIKANNAN 《Defence Technology(防务技术)》 SCIE EI CAS 2014年第3期251-260,共10页
The activated TIG(ATIG) welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention.The shape of a weld in terms of its width-to-d... The activated TIG(ATIG) welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention.The shape of a weld in terms of its width-to-depth ratio known as aspect ratio has a marked influence on its solidification cracking tendency.The major influencing ATIG welding parameters,such as electrode gap,travel speed,current and voltage,that aid in controlling the aspect ratio of DSS joints,must be optimized to obtain desirable aspect ratio for DSS joints.Hence in this study,the above parameters of ATIG welding for aspect ratio of ASTM/UNS S32205 DSS welds are optimized by using Taguchi orthogonal array(OA)experimental design and other statistical tools such as Analysis of Variance(ANOVA) and Pooled ANOVA techniques.The optimum process parameters are found to be 1 mm electrode gap,130 mm/min travel speed,140 A current and 12 V voltage.The aspect ratio and the ferrite content for the DSS joints fabricated using the optimized ATIG parameters are found to be well within the acceptable range and there is no macroscopically evident solidification cracking. 展开更多
关键词 DUPLEX stainless steel ATIG WELDING ASPECT ratio Taguchi design FERRITE number Solidification cracking
在线阅读 下载PDF
Characterization of stress corrosion crack growth of 304 stainless steel by electrochemical noise and scanning Kelvin probe 被引量:14
13
作者 赵茹 张正 +2 位作者 石江波 陶蕾 宋诗哲 《Journal of Central South University》 SCIE EI CAS 2010年第1期13-18,共6页
The fatigue pre-cracking 304 stainless steel (SS) specimens with lengths of 1.002 mm (L-crack) and 0.575 mm (S-crack) were prepared. Their corrosion behavior was studied by electrochemical noise (EN) in 4 mol/... The fatigue pre-cracking 304 stainless steel (SS) specimens with lengths of 1.002 mm (L-crack) and 0.575 mm (S-crack) were prepared. Their corrosion behavior was studied by electrochemical noise (EN) in 4 mol/L NaC1 + 0.01 mol/L Na2S203 solution under slow-strain-rate-testing (SSRT) conditions. Moreover, the characteristics of L-crack's surface morphology and potential distribution with scanning Kelvin probe (SKP) before and after SSRT were also discussed. Compared with S-crack, L-crack is propagated and the features of crack propagation can be obtained. After propagation, the noise amplitudes increase with increasing stress and accelerating corrosion, the white noises at low and high frequencies (WE and WH) of the later stage are one order of magnitude larger than that at early stage in the current power spectral densities (PSDs). The potential PSDs also increase, but WH disappears. In addition, the crack propagation can be demonstrated according to variation of probability distribution, surface morphology and potential distribution. 展开更多
关键词 304 stainless steel fatigue pre-cracking electrochemical noise stress corrosion cracking (SCC) scanning Kelvin probe
在线阅读 下载PDF
Hydrogen trapping in high strength 0Cr16Ni5Mo martensitic stainless steel 被引量:3
14
作者 孙永伟 陈继志 刘军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4128-4136,共9页
Hydrogen trapping behavior has been investigated by means of thermal desorption spectroscopy(TDS) for a high strength steel after it was tempered at the temperatures of 430 °C, 500 °C and 520 °C, respec... Hydrogen trapping behavior has been investigated by means of thermal desorption spectroscopy(TDS) for a high strength steel after it was tempered at the temperatures of 430 °C, 500 °C and 520 °C, respectively. The loss of ductility was characterized by slow strain rate test(SSRT) and microscopic observation. It shows that with hydrogen charging the fracture feature transfers from ductile to brittle, resulting in the loss of ductility. Undeformed microstructure immediately beneath the fracture surface in charged specimen corresponds to badly ductility compared to the obviously streamline plastic deformation in uncharged specimen. The activation energies for the peaks present in the TDS analysis are calculated for all tested steel and the activation energies for all temperature peaks are similar, corresponding to the similar types of hydrogen traps. 展开更多
关键词 martensitic stainless steel HYDROGEN TRAPPING ther
在线阅读 下载PDF
Research on High-Speed Drilling Performances of Austenitic Stainless Steels 被引量:5
15
作者 J.W.Zhong Y.P.Ma F.H.Sun M.Chen 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第z2期83-88,共6页
Due to specific properties arising from their structure (high ductility, high toughness,strong tenacious and low heat conductivity), the stainless steels have poor machinability. The drilling of the stainless steels b... Due to specific properties arising from their structure (high ductility, high toughness,strong tenacious and low heat conductivity), the stainless steels have poor machinability. The drilling of the stainless steels becomes the machining difficulty for their serious work-hardening and abrasion of tools. In this paper, the austenitic stainless steel is used as the work-piece to perform the contrastive experiments with the TiN coated and TiAlN-coated high-speed steel drills. The cutting force, torque, cutting temperature, and the abrasion of drills and tool life are tested and analyzed in the process of high-speed drilling. Experiment results show the effect of drilling speed on cutting force, cutting temperature, and drill wear. TiAlN-coated drills demonstrate better performances in high speed drilling. The research results will be of great benefit in the selection of drills and in the control of tool wear in high speed drilling of stainless steels. 展开更多
关键词 stainless STEEL TiN-coating TiAlN-coating DRILLING
在线阅读 下载PDF
Deformation behaviors of 21-6-9 stainless steel tube numerical control bending under different friction conditions 被引量:10
16
作者 方军 鲁世强 +1 位作者 王克鲁 姚正军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期2864-2874,共11页
For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-p... For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending. 展开更多
关键词 21-6-9 stainless steel tube FRICTION deformation behaviors numerical control bending finite element simulation
在线阅读 下载PDF
Microstructure and mechanical properties of similar and dissimilar metal gas tungsten constricted arc welds:Maraging steel to 13-8 Mo stainless steel 被引量:3
17
作者 C.V.S.Murthy A.Gopala Krishna G.M.Reddy 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第1期111-121,共11页
Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The si... Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The similar and dissimilar metal welds made in solutionized condition were subjected to standard post weld hardening treatments direct ageing at 485 ℃, soaking for 31/2 hours followed by air cooling(ageing treatment of maraging steel) and direct ageing at 510 ℃, soaking for 4 h followed by air cooling(ageing treatment of 13-8 Mo stainless steel). The joint characterization studies include microstructure examination, microhardness survey across the weldments and transverse weld tensile test.Similar and dissimilar metal weldments responded to both the post weld ageing treatment. After post weld aging, increase in yield strength, UTS and slight reduction in % elongation of similar and dissimilar metal were observed. The observed tensile properties were correlated with microstructure and hardness distribution across the welds. 展开更多
关键词 Maraging steel(250) 13-8 MO stainless STEEL Mechanical properties Microstructure
在线阅读 下载PDF
Thermodynamic calculation on the smelting slag of direct recycling of electric arc furnace stainless steelmaking dust 被引量:6
18
作者 彭兵 彭及 +4 位作者 Janusz A.Kozinski Jonathan Lobel 柴立元 张传福 陈为亮 《Journal of Central South University of Technology》 2003年第1期20-26,共7页
Thermodynamic calculation on the smelting slag of direct recycling of electric arc furnace stainless steelmaking dust was presented. An induction furnace was used to simulate electric arc furnace smelting to recover t... Thermodynamic calculation on the smelting slag of direct recycling of electric arc furnace stainless steelmaking dust was presented. An induction furnace was used to simulate electric arc furnace smelting to recover the metals from the dust. The elements of iron, chromium and nickel in the ingot and the components of metal oxides in the slag were analyzed. The thermodynamic model for FeO Cr 2O 3 MgO SiO 2 slag was set up and the active concentrations of substances in the slag at 1 550 ℃ were determined by thermodynamic calculation according to the experimental data. The results show that the apparent equilibrium constant and quantitative distribution of chromium between slag and steel are unstable and affected by the mass ratios of pellets to start iron and metal reducing agent to the pellets. In order to get satisfactory chromium recovery from the direct recycling of electric arc furnace stainless steelmaking dust, it is important to ensure the mass ratio of pellets to the steel below 0.20 and the mass ratio of metal reducing agent to pellets over 0.18 in practical smelting runs. 展开更多
关键词 THERMODYNAMIC CALCULATION stainless STEELMAKING DUST reduction RECYCLING
在线阅读 下载PDF
Investigation of modeling on single grit grinding for martensitic stainless steel 被引量:6
19
作者 NIE Zhen-guo WANG Gang +2 位作者 JIANG Feng LIN Yong-liang RONG Yi-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第8期1862-1869,共8页
Single grit grinding is the simplified model to abstract the macro scale grinding.Finite element analysis is a strong tool to study the physical fields during a single grit grinding process,compared to experimental re... Single grit grinding is the simplified model to abstract the macro scale grinding.Finite element analysis is a strong tool to study the physical fields during a single grit grinding process,compared to experimental research.Based on the dynamic mechanical behavior of 2Cr12Ni4Mo3VNbN steel and the mathematical statistics of abrasive grit,modeling of the single grit grinding process was conducted by using commercial software AdvantEdge.The validation experiment was designed to validate the correctness of the FEA model by contrast with grinding force.The validation result shows that the FEA model can well describe the single grit grinding process.Then the grinding force and multi-physics fields were studied by experimental and simulation results.It was found that both the normal and tangential grinding forces were linearly related to the cutting speed and cutting depth.The maximum temperature is located in the subsurface of the workpiece in front of the grit,while the maximum stress and strain are located under the grit tip.The strain rate can reach as high as about 106 s–1 during the single grit grinding,which is larger than other traditional machining operations. 展开更多
关键词 MODELING single grit grinding grinding force MULTI-PHYSICS martensitic stainless steel
在线阅读 下载PDF
Electrochemical characteristics of electroplating and impregnation Ni-P/SiC/PTFE composite coating on 316L stainless steel 被引量:4
20
作者 GAO Ping-ping GAO Mei-lian +6 位作者 WU An-ru WU Xiao-bo LIU Chun-xun ZHANG Yang ZHOU Hai-kun PENG Xiao-min XIE Zhi-yong 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3615-3624,共10页
Ni-P/SiC/PTFE coating was obtained on the surface of 316L stainless steel by electrodeposition of Ni-P/SiC coating and immersion of PTFE(polytetrafluoroethylene).The surface morphology and composition were analyzed by... Ni-P/SiC/PTFE coating was obtained on the surface of 316L stainless steel by electrodeposition of Ni-P/SiC coating and immersion of PTFE(polytetrafluoroethylene).The surface morphology and composition were analyzed by scanning electron microscope and energy dispersive spectrometer.The corrosion resistance of the coating in 0.5 mol/L H2SO4+2×10−6 HF solution was studied by electrochemical method.Surface contact angle was used to test the hydrophobic properties of the coating.The results indicated that the Ni-P/SiC/PTFE coating prepared on the surface of stainless steel was uniform and compact,which significantly improved the self-corrosion potential of stainless steel.The self-corrosion current density decreased from 7.62 to 0.008μA/cm2.The durability performance of coating was tested under 0.6 V voltage and the stable corrosion current density value was 0.19μA/cm2,then wetting angle was tested after durability experiment and the value is 134.5°. 展开更多
关键词 316L stainless steel electroplate NI-P PTFE SiC corrosion resistance
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部