尝试利用卫星遥感高分辨率海表温度资料GHRSST(Group for High Resolution Sea Surface Temperature)与海表温度(sea surface temperature,SST)数值预报产品之间的误差,建立一种南海SST模式预报订正方法。首先,利用南海的Argo浮标上层...尝试利用卫星遥感高分辨率海表温度资料GHRSST(Group for High Resolution Sea Surface Temperature)与海表温度(sea surface temperature,SST)数值预报产品之间的误差,建立一种南海SST模式预报订正方法。首先,利用南海的Argo浮标上层海温数据对GHRSST海温数据进行验证,结果表明两者之间均方根误差约为0.3℃,相关系数为0.98,GHRSST海温数据可用于南海业务化数值预报SST的订正。预报订正后的SST与Argo浮标海温数据相比,24h、48h和72h的均方根误差均由0.8℃左右下降到0.5℃以内。与GHRSST海温数据相比,南海北部海域(110°E—121°E,13°N—23°N)订正后的24h、48h和72h的SST预报空间误差均显著减小,在冷空气影响南海期间或中尺度涡存在的过程中,SST预报订正效果也较为显著。因此,该方法可考虑在南海业务化SST数值预报系统中应用。展开更多
热带海表温度(SST)模拟偏差是困扰海气耦合模式发展的经典问题之一,其原因仍不完全清晰。针对海气耦合模式CESM1(Community Earth System Model version 1)模拟的热带印度洋SST偏差,我设计了单独大气-陆面模式、单独海洋-海冰模式以及...热带海表温度(SST)模拟偏差是困扰海气耦合模式发展的经典问题之一,其原因仍不完全清晰。针对海气耦合模式CESM1(Community Earth System Model version 1)模拟的热带印度洋SST偏差,我设计了单独大气-陆面模式、单独海洋-海冰模式以及海气耦合模式等一系列数值实验。在此基础上,采用大气-陆面模式和海洋-海冰模式隐式(implicit)SST偏差的分析方法,诊断了CESM1模拟的热带印度洋SST偏差的来源,并分析了大气模式和海洋模式中影响热带印度洋上层海温模拟的主要因素。通过分析热带印度洋不同地区SST的模拟偏差来源,发现耦合模式CESM1中孟加拉湾SST模拟偏冷主要是由海洋-海冰模式中过强的垂直混合、平流作用等海洋动力偏差引起的。在阿拉伯海和赤道西印度洋,过多的潜热释放导致SST降低,大气-陆面模式模拟误差是这两个海域SST冷偏差的主要来源。对于赤道中印度洋,潜热通量偏差和垂直混合、平流作用等模拟误差共同影响上层海水温度,潜热释放偏少、海水垂直混合偏弱以及经向平流向南输送过多暖水使耦合模式模拟的赤道中印度洋SST出现暖偏差,而在赤道东印度洋,模拟的SST偏冷是由大气-陆面模式中短波辐射偏少和海洋-海冰模式中海水垂直混合过强引起的,潜热通量偏差影响较小。分析表明,耦合模式中海气相互作用只影响SST模拟偏差的大小,但不是引起SST偏差的根本原因。展开更多
利用AOML(Atlantic Oceanographical and Meteorological Laboratory)SVP漂流浮标的海表面温度数据,针对30°S以南的南大洋海域,对目前主要使用的微波遥感产品(AMSR-E,Ad-vanced Microwave Scanning Radiometer for the Earth Obser...利用AOML(Atlantic Oceanographical and Meteorological Laboratory)SVP漂流浮标的海表面温度数据,针对30°S以南的南大洋海域,对目前主要使用的微波遥感产品(AMSR-E,Ad-vanced Microwave Scanning Radiometer for the Earth Observing System)反演的SST进行了较为系统的评估。结果表明,AMSR-E SST比浮标数据偏冷,偏差为-0.01℃,标准差为0.70℃。夏季的偏差为0.004℃,标准差为0.64℃;冬季的偏差为-0.06℃,标准差为0.75℃,冬季的偏差和标准差较大。温差ΔT受流速影响,随着流速的增大而减小,且这种趋势在夏季更为显著。具备托伞结构的浮标与总体情况基本一致,而无托伞结构的浮标受流速的影响要大一些。同时,温差ΔT受水汽的影响,随着水汽的增加而减小,且这种影响在冬季更大一些。进一步对4个穿极和绕极浮标的追踪分析表明,温差ΔT受大洋海流系统的影响显著。在海流大的大西洋边界流和南极绕极流中,温差ΔT的不确定性要明显大于总体情况。展开更多
文摘尝试利用卫星遥感高分辨率海表温度资料GHRSST(Group for High Resolution Sea Surface Temperature)与海表温度(sea surface temperature,SST)数值预报产品之间的误差,建立一种南海SST模式预报订正方法。首先,利用南海的Argo浮标上层海温数据对GHRSST海温数据进行验证,结果表明两者之间均方根误差约为0.3℃,相关系数为0.98,GHRSST海温数据可用于南海业务化数值预报SST的订正。预报订正后的SST与Argo浮标海温数据相比,24h、48h和72h的均方根误差均由0.8℃左右下降到0.5℃以内。与GHRSST海温数据相比,南海北部海域(110°E—121°E,13°N—23°N)订正后的24h、48h和72h的SST预报空间误差均显著减小,在冷空气影响南海期间或中尺度涡存在的过程中,SST预报订正效果也较为显著。因此,该方法可考虑在南海业务化SST数值预报系统中应用。
文摘热带海表温度(SST)模拟偏差是困扰海气耦合模式发展的经典问题之一,其原因仍不完全清晰。针对海气耦合模式CESM1(Community Earth System Model version 1)模拟的热带印度洋SST偏差,我设计了单独大气-陆面模式、单独海洋-海冰模式以及海气耦合模式等一系列数值实验。在此基础上,采用大气-陆面模式和海洋-海冰模式隐式(implicit)SST偏差的分析方法,诊断了CESM1模拟的热带印度洋SST偏差的来源,并分析了大气模式和海洋模式中影响热带印度洋上层海温模拟的主要因素。通过分析热带印度洋不同地区SST的模拟偏差来源,发现耦合模式CESM1中孟加拉湾SST模拟偏冷主要是由海洋-海冰模式中过强的垂直混合、平流作用等海洋动力偏差引起的。在阿拉伯海和赤道西印度洋,过多的潜热释放导致SST降低,大气-陆面模式模拟误差是这两个海域SST冷偏差的主要来源。对于赤道中印度洋,潜热通量偏差和垂直混合、平流作用等模拟误差共同影响上层海水温度,潜热释放偏少、海水垂直混合偏弱以及经向平流向南输送过多暖水使耦合模式模拟的赤道中印度洋SST出现暖偏差,而在赤道东印度洋,模拟的SST偏冷是由大气-陆面模式中短波辐射偏少和海洋-海冰模式中海水垂直混合过强引起的,潜热通量偏差影响较小。分析表明,耦合模式中海气相互作用只影响SST模拟偏差的大小,但不是引起SST偏差的根本原因。
文摘利用AOML(Atlantic Oceanographical and Meteorological Laboratory)SVP漂流浮标的海表面温度数据,针对30°S以南的南大洋海域,对目前主要使用的微波遥感产品(AMSR-E,Ad-vanced Microwave Scanning Radiometer for the Earth Observing System)反演的SST进行了较为系统的评估。结果表明,AMSR-E SST比浮标数据偏冷,偏差为-0.01℃,标准差为0.70℃。夏季的偏差为0.004℃,标准差为0.64℃;冬季的偏差为-0.06℃,标准差为0.75℃,冬季的偏差和标准差较大。温差ΔT受流速影响,随着流速的增大而减小,且这种趋势在夏季更为显著。具备托伞结构的浮标与总体情况基本一致,而无托伞结构的浮标受流速的影响要大一些。同时,温差ΔT受水汽的影响,随着水汽的增加而减小,且这种影响在冬季更大一些。进一步对4个穿极和绕极浮标的追踪分析表明,温差ΔT受大洋海流系统的影响显著。在海流大的大西洋边界流和南极绕极流中,温差ΔT的不确定性要明显大于总体情况。