In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Comb...In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient.展开更多
In this paper,an efficient conjugate gradient method is given to solve the general unconstrained optimization problems,which can guarantee the sufficient descent property and the global convergence with the strong Wol...In this paper,an efficient conjugate gradient method is given to solve the general unconstrained optimization problems,which can guarantee the sufficient descent property and the global convergence with the strong Wolfe line search conditions.Numerical results show that the new method is efficient and stationary by comparing with PRP+ method,so it can be widely used in scientific computation.展开更多
As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initiall...As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initially proposed by Jiang et al.(Computational and Applied Mathematics,2021,40:174),through the utilization of a convex combination technique.And this improvement allows for an adaptive search direction by integrating a newly constructed spectral gradient-type restart strategy.Then,we develop a new spectral CGM by employing an inexact line search to determine the step size.With the application of the weak Wolfe line search,we establish the sufficient descent property of the proposed search direction.Moreover,under general assumptions,including the employment of the strong Wolfe line search for step size calculation,we demonstrate the global convergence of our new algorithm.Finally,the given unconstrained optimization test results show that the new algorithm is effective.展开更多
Recently, Gilbert and Nocedal([3]) investigated global convergence of conjugate gradient methods related to Polak-Ribiere formular, they restricted beta(k) to non-negative value. [5] discussed the same problem as that...Recently, Gilbert and Nocedal([3]) investigated global convergence of conjugate gradient methods related to Polak-Ribiere formular, they restricted beta(k) to non-negative value. [5] discussed the same problem as that in [3] and relaxed beta(k) to be negative with the objective function being convex. This paper allows beta(k) to be selected in a wider range than [5]. Especially, the global convergence of the corresponding algorithm without sufficient decrease condition is proved.展开更多
Y Liu and C Storey(1992)proposed the famous LS conjugate gradient method which has good numerical results.However,the LS method has very weak convergence under the Wolfe-type line search.In this paper,we give a new de...Y Liu and C Storey(1992)proposed the famous LS conjugate gradient method which has good numerical results.However,the LS method has very weak convergence under the Wolfe-type line search.In this paper,we give a new descent gradient method based on the LS method.It can guarantee the sufficient descent property at each iteration and the global convergence under the strong Wolfe line search.Finally,we also present extensive preliminary numerical experiments to show the efficiency of the proposed method by comparing with the famous PRP^+method.展开更多
文摘In this paper, a new class of three term memory gradient method with non-monotone line search technique for unconstrained optimization is presented. Global convergence properties of the new methods are discussed. Combining the quasi-Newton method with the new method, the former is modified to have global convergence property. Numerical results show that the new algorithm is efficient.
基金Supported by the Fund of Chongqing Education Committee(KJ091104)
文摘In this paper,an efficient conjugate gradient method is given to solve the general unconstrained optimization problems,which can guarantee the sufficient descent property and the global convergence with the strong Wolfe line search conditions.Numerical results show that the new method is efficient and stationary by comparing with PRP+ method,so it can be widely used in scientific computation.
基金supported by the National Natural Science Foundation of China(No.72071202)the Key Laboratory of Mathematics and Engineering Applications,Ministry of Education。
文摘As a generalization of the two-term conjugate gradient method(CGM),the spectral CGM is one of the effective methods for solving unconstrained optimization.In this paper,we enhance the JJSL conjugate parameter,initially proposed by Jiang et al.(Computational and Applied Mathematics,2021,40:174),through the utilization of a convex combination technique.And this improvement allows for an adaptive search direction by integrating a newly constructed spectral gradient-type restart strategy.Then,we develop a new spectral CGM by employing an inexact line search to determine the step size.With the application of the weak Wolfe line search,we establish the sufficient descent property of the proposed search direction.Moreover,under general assumptions,including the employment of the strong Wolfe line search for step size calculation,we demonstrate the global convergence of our new algorithm.Finally,the given unconstrained optimization test results show that the new algorithm is effective.
文摘Recently, Gilbert and Nocedal([3]) investigated global convergence of conjugate gradient methods related to Polak-Ribiere formular, they restricted beta(k) to non-negative value. [5] discussed the same problem as that in [3] and relaxed beta(k) to be negative with the objective function being convex. This paper allows beta(k) to be selected in a wider range than [5]. Especially, the global convergence of the corresponding algorithm without sufficient decrease condition is proved.
基金Supported by The Youth Project Foundation of Chongqing Three Gorges University(13QN17)Supported by the Fund of Scientific Research in Southeast University(the Support Project of Fundamental Research)
文摘Y Liu and C Storey(1992)proposed the famous LS conjugate gradient method which has good numerical results.However,the LS method has very weak convergence under the Wolfe-type line search.In this paper,we give a new descent gradient method based on the LS method.It can guarantee the sufficient descent property at each iteration and the global convergence under the strong Wolfe line search.Finally,we also present extensive preliminary numerical experiments to show the efficiency of the proposed method by comparing with the famous PRP^+method.