期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv7的小目标和低对比度纸病分类算法研究
1
作者 汤伟 周国庆 +4 位作者 王孟效 方嘉楠 张龙 郑晓虎 刘英伟 《中国造纸》 北大核心 2025年第3期143-151,共9页
随着纸机车速提升和幅宽加大,纸病出现频率随之上升。为根治纸病,需对其有效分类以溯源。但因部分纸病目标小、对比度低,分类效果欠佳。本课题提出了一种基于改进YOLOv7的分类方法,核心思想是在颈部网络改良快速跨阶段特征金字塔池化(SP... 随着纸机车速提升和幅宽加大,纸病出现频率随之上升。为根治纸病,需对其有效分类以溯源。但因部分纸病目标小、对比度低,分类效果欠佳。本课题提出了一种基于改进YOLOv7的分类方法,核心思想是在颈部网络改良快速跨阶段特征金字塔池化(SPPFCSPC)模块,在感受野不变前提下提升分类速度;使用空间深度卷积替换原有的“卷积+池化层”,增强对纸病的特征提取能力;通过注意力模块(SimAM),使更多的资源集中于纸病细节,进一步提高低对比度和小目标纸病的识别效率。结果表明,本课题算法的平均精度达0.97,实时检测速度26.5帧/s。相比于原YOLOv7网络,本算法在小目标和低对比度纸病的平均精度和检测速度方面均有明显提升。 展开更多
关键词 纸病分类 小目标 YOLOv7 sppfcspc SimAM
在线阅读 下载PDF
基于改进的YOLOv8n海洋动物目标检测算法:DPSC-YOLO 被引量:1
2
作者 梁佳杰 徐慧英 +3 位作者 朱信忠 王舒梦 刘子洋 李琛 《计算机工程与科学》 北大核心 2025年第4期695-705,共11页
在海洋复杂的环境中,由于图像拍摄模糊、背景复杂,导致基于深度学习的目标检测算法存在特征提取困难和目标漏检等问题,因此海洋目标检测算法需要更加高效且性能优越。为此提出了一种基于YOLOv8n改进的海洋动物目标检测算法:DPSC-YOLO。... 在海洋复杂的环境中,由于图像拍摄模糊、背景复杂,导致基于深度学习的目标检测算法存在特征提取困难和目标漏检等问题,因此海洋目标检测算法需要更加高效且性能优越。为此提出了一种基于YOLOv8n改进的海洋动物目标检测算法:DPSC-YOLO。在主干网络中引入DCNv2模块,通过增强空间建模能力来适应对象的几何变化;在主干网络末端引入空间金字塔池化SPPFCSPC,在保持模型感知场不变的同时减少模型的计算量;在颈部网络增加F 2极小目标检测头,结合其余3个尺度,使用4个不同的感受野检测层提高小目标检测精度;在颈部网络的C2f模块中结合CoTAttention注意力机制更好地利用相邻键之间的上下文信息,并根据数据的特点动态调整注意力分配。实验结果表明,DPSC-YOLO目标检测算法与YOLOv8n相比mAP@0.5提升了1.1%,mAP@0.5:0.95提升了4.6%,同时仅有较少的参数量和计算量的增加,证明DPSC-YOLO更适合复杂海洋环境中的目标检测任务。 展开更多
关键词 YOLOv8 DCNv2 sppfcspc 上下文注意力机制 小目标检测头
在线阅读 下载PDF
融合渐进式去雨网络的军用车辆检测算法
3
作者 苏胜君 仝秋红 +3 位作者 柴国庆 苏海东 王凯 胡待方 《现代电子技术》 北大核心 2025年第5期127-134,共8页
针对雨天场景下检测军用车辆目标时出现的精度退化问题,提出一种将渐进式去雨算法与高精确率检测器相融合的军用车辆检测方法。首先设计了一个图像去雨算法HISPNet,其包括轻量级高效雨纹特征提取模块和跨子网雨纹特征融合模块,捕获雨纹... 针对雨天场景下检测军用车辆目标时出现的精度退化问题,提出一种将渐进式去雨算法与高精确率检测器相融合的军用车辆检测方法。首先设计了一个图像去雨算法HISPNet,其包括轻量级高效雨纹特征提取模块和跨子网雨纹特征融合模块,捕获雨纹信息的同时缓解卷积过程中的细节特征丢失问题;其次引入SPPFCSPC模块改进了单阶段检测器,保证检测器感受野的同时提高了效率,增强了检测模型的表达能力。自建数据集中的实验结果表明,雨天场景下,相较于经典检测算法YOLOv7,所提算法的mAP@0.5、mAP@0.5:0.95分别提升了4.4%、2.8%,算法检测速度达到21.05 f/s,基本满足检测实时性要求,证明了所提算法的有效性与实用性。 展开更多
关键词 图像去雨 编码器-解码器架构 轻量级高效雨纹特征提取模块 跨子网雨纹特征融合模块 sppfcspc模块 军用车辆检测
在线阅读 下载PDF
CSD-YOLOv8s:基于无人机图像的密集小目标羊只检测模型 被引量:1
4
作者 翁智 刘海鑫 郑志强 《智慧农业(中英文)》 CSCD 2024年第4期42-52,共11页
[目的/意义]天然牧场下放牧牲畜数量的准确检测是规模化养殖场改造升级的关键。为满足规模化养殖场对大批羊群实现精准实时的检测需求,提出一种高精度、易部署的小目标检测模型CSD-YOLOv8s (CBAM SPPFCSPC DSConv-YOLOv8s),实现无人机... [目的/意义]天然牧场下放牧牲畜数量的准确检测是规模化养殖场改造升级的关键。为满足规模化养殖场对大批羊群实现精准实时的检测需求,提出一种高精度、易部署的小目标检测模型CSD-YOLOv8s (CBAM SPPFCSPC DSConv-YOLOv8s),实现无人机高空视角下小目标羊只个体的实时检测。[方法]首先,使用无人机获取天然草原牧场中包含不同背景及光照条件下的羊群视频数据并与下载的部分公开数据集共同构成原始图像数据。通过数据清洗和标注整理生成羊群检测数据集。其次,为解决羊群密集和相互遮挡造成的羊只检测困难问题,基于YOLO (You Only Look Once) v8模型构建具有跨阶段局部连接的SPPFCSPC (Spatial Pyramid Pooling Fast-CSPC)模块,提升网络特征提取和特征融合能力,增强模型对小目标羊只的检测性能。在模型的Neck部分引入了卷积注意力模块(Convolutional Block Attention Module, CBAM),从通道和空间两个维度增强网络的抗干扰能力,提升网络对复杂背景的抑制能力,进一步提高对密集羊群的检测性能。最后,为提升模型的实时性和可部署性,将Neck网络的标准卷积改为具有可变化内核的轻量卷积C2f_DS (C2f-DSConv)模块,减小了模型的参数量并提升了模型的检测速度。[结果和讨论]与YOLO、Faster R-CNN (Faster Regions with Convolutional Neural Networks)及其他经典网络模型相比,改进后的CSD-YOLOv8s模型在检测速度和模型大小相当的情况下,在羊群检测任务中具有更高的检测精度。Precision达到95.2%,mAP达到93.1%,FPS (Frames Per Second)达到87 f/s,并对不同遮挡程度的羊只目标具有较强的鲁棒性,有效解决了无人机检测任务中因羊只目标小、背景噪声大、密集程度高导致羊群漏检和误检严重的问题。公开数据集验证结果表明,提出的模型对其他不同物体的检测精度均有所提高,特别是在羊只检测方面,检测精度提升了9.7%。[结论]提出的CSD-YOLOv8s在无人机图像中更精准地检测草原放牧牲畜,对不同程度的聚集和遮挡目标实现精准检测,且具有较好的实时性,为养殖场大规模畜禽检测提供了技术支撑,具有广泛的应用潜力。 展开更多
关键词 羊只检测 YOLOv8 小目标 sppfcspc 注意力机制 深度可分离卷积
在线阅读 下载PDF
基于交错部分卷积的高压输电线路检测方法 被引量:1
5
作者 李利荣 戴俊伟 +3 位作者 崔浩 梅冰 贺章擎 李婕 《电网技术》 EI CSCD 北大核心 2024年第12期5159-5168,I0074-I0076,I0073,共14页
在输电线路无人机巡检任务中,针对基于深度学习的航拍图像中待检测目标检测精度不高和模型过大而难以部署至无人机等移动端设备的问题,提出了以YOLOv7-tiny为基础网络进行改进以实现提高检测精度并将模型轻量化的方法。首先,该文设计了... 在输电线路无人机巡检任务中,针对基于深度学习的航拍图像中待检测目标检测精度不高和模型过大而难以部署至无人机等移动端设备的问题,提出了以YOLOv7-tiny为基础网络进行改进以实现提高检测精度并将模型轻量化的方法。首先,该文设计了一种交错部分卷积(interlace partial convolution,IPConv),并利用其构建IP1-ELAN、IP2-ELAN模块作为网络的特征提取模块,使其能有效减轻模型中通道冗余问题,并大幅度减少模型的参数量和浮点数;其次,在骨干网络最后一层中融合高效多尺度注意力机制(efficient multi-scale attention,EMSA)以实现跨通道交互,增强目标区域特征提取能力;最后,融合快速空间金字塔池化及跨阶段空间通道(spatial pyramid pooling faster,cross stage partial channel,SPPFCSPC)模块,进一步增强特征提取能力,提升模型检测性能。通过实验验证,该文方法在输电线路巡检数据集中模型参数量和浮点数分别仅为3.79M,8.4G,检测精度为85.8%。综合性能优于目前常用的检测算法,能够基本满足部署至无人机端进行检测任务。 展开更多
关键词 输电线路巡检 通道冗余 多尺度 交错部分卷积 高效多尺度注意力机制 快速空间金字塔池化及跨阶段空间通道
在线阅读 下载PDF
基于机器视觉的瓶装饮料液位识别与定位 被引量:2
6
作者 朱霆芳 赵博 +2 位作者 刘阳春 冯林 李明辉 《农业工程》 2023年第2期19-26,共8页
为实现饮料生产线PET瓶装饮料液位检测系统集成化和简单化,使用机器视觉方法取代传统传感器触发PET瓶装饮料液位检测程序,实现生产线PET瓶装饮料液位快速识别定位,提出了基于改进YOLOv7的生产线PET瓶装饮料液位快速识别与定位方法。在原... 为实现饮料生产线PET瓶装饮料液位检测系统集成化和简单化,使用机器视觉方法取代传统传感器触发PET瓶装饮料液位检测程序,实现生产线PET瓶装饮料液位快速识别定位,提出了基于改进YOLOv7的生产线PET瓶装饮料液位快速识别与定位方法。在原YOLOv7的基础上,将原SPPCSPC池化金字塔结构改进为更快的SPPFCSPC结构,并使用SIoU损失函数对原有损失函数进行改进。实测试验结果表明,改进YOLOv7液位识别模型对包含有色彩失真和噪点的PET饮料瓶身、瓶装饮料液位识别精度为98.9%、96.3%,并且单幅图像识别并框定时间均长为12.1 ms。在采集图像样本色彩失真、多噪点和图像旋转情况下,模型仍能实现高精度瓶装饮料液位识别与定位。 展开更多
关键词 饮料生产线 机器视觉 液位快速识别与定位 改进YOLOv7 sppfcspc SIoU
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部