Factors for determining the spindle size are the shaft diameter, positions of bearing and motor, and entire length of the spindle. Then, it is important to find the assembling of the optimal design variables, which sa...Factors for determining the spindle size are the shaft diameter, positions of bearing and motor, and entire length of the spindle. Then, it is important to find the assembling of the optimal design variables, which satisfy the stiffimss and rotational speed required to the spindle. A general full factorial design method was used to verify some factors that affect the natural frequency of a spindle. It is verified that the shorter shaft length and bearing span length represent the higher natural frequency, and there are some effects according to the change in the levels of factors. The detailed spindle dimension is determined by applying an EVD method, which can define the optimal bearing position through considering the limiting condition. Based on the estimated regression model, the optimal spindle size and bearing distance that can improve the primary natural frequency are obtained, and the influence of design factors on the natural frequency is also analyzed.展开更多
For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machi...For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machine tool spindle system with geared transmission.By using the elementary method and Runge-Kutta method in Matlab,the eigenvalue problem was solved and the pure torsional vibration responses were obtained and examined.The results show that the spindle system cannot operate in the desired constant rotating speed as far as the gravitational unbalance torque is engaged,so it may cause bad effect on machining accuracy.And the torsional vibration increases infinitely near the resonant frequencies,so the spindle system cannot operate normally during these spindle speed ranges.展开更多
To increase the machine accuracy by improving the stiffness of bearings,a preload was applied to bearings.A variable preload technology was necessary to perform machining processes in both low and high speed regions.A...To increase the machine accuracy by improving the stiffness of bearings,a preload was applied to bearings.A variable preload technology was necessary to perform machining processes in both low and high speed regions.An automatic variable preload device was fabricated using an eccentric mass.By installing the fabricated device on a spindle,the effect of the automatic variable preload device on the performance of the spindle was analyzed.In the results of the vibration measurement of the spindle,the vibration is increased by 20%-37% according to measurement points at the maximum rotation speed of 5 000 r/min.And,in the results of the noise measurement of the spindle,the spindle rotation speed is increased by about 1.9% and 1.5% at the front and side of the spindle,respectively.Based on the results of this analysis,an improved method that reduces such effects on the performance of the spindle is proposed.展开更多
Making an analysis for vibration modal and frequency response of the lathe spindle,respectively by using finite element method based on ANSYS and experiment of CA6140 type lathe in machining,and the calculation result...Making an analysis for vibration modal and frequency response of the lathe spindle,respectively by using finite element method based on ANSYS and experiment of CA6140 type lathe in machining,and the calculation results are compared and analyzed,which verified the accuracy of ANSYS method. Numerical simulation and experimental results show that: Spindle in the first order and fifth order are prone to resonance,but did not reach resonance,the low order natural frequency have more effect than the high order natural frequency of the spindle vibration; by the experiments can conclude that the maximum vibration of the main shaft in the working state is mainly concentrated in the vicinity of its two ends,therefore,the improved bearing is an important way to reduce the vibration of the main shaft and ensure the machining accuracy,and the research results can provide a theoretical reference for the structural optimization design of the lathe.展开更多
Potato spindle tuber viroid(PSTVd)disease is one of the major diseases that threatens potato production.Therefore,an advanced,rapid and sensitive detection technology is needed to detect the disease for better control...Potato spindle tuber viroid(PSTVd)disease is one of the major diseases that threatens potato production.Therefore,an advanced,rapid and sensitive detection technology is needed to detect the disease for better control.In order to establish an easier nucleic acid spot hybridization(NASH)method,some studies were tried as the followings:(1)the pre-hybridization step of nucleic acid spot hybridization(NASH)was omitted compared with ordinary way;(2)RNA extraction(phenol extraction and Ames buffer extraction)methods were compared;(3)fixed RNA by UV lamp and oven compared with UV cross-linker;(4)hybridized the RNA in shaking incubator and so on.The results showed that RNA extracted by Ames buffer was more effective than by the phenol extraction method.Besides,the result of hybridization without pre-hybridization step was better than that with 1.5 h of pre-hybridization.The more important discovery was that the shaking incubator could replace the hybridization oven and the ordinary UV lamp could replace the UV cross-linker.After a long term repeated research and testing,a new hybridization system that could rapidly detect the PSTVd by improved NASH technique merely using common instruments and equipment was established.展开更多
基金Project(RTI04-01-03) supported by the Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE) of Korea
文摘Factors for determining the spindle size are the shaft diameter, positions of bearing and motor, and entire length of the spindle. Then, it is important to find the assembling of the optimal design variables, which satisfy the stiffimss and rotational speed required to the spindle. A general full factorial design method was used to verify some factors that affect the natural frequency of a spindle. It is verified that the shorter shaft length and bearing span length represent the higher natural frequency, and there are some effects according to the change in the levels of factors. The detailed spindle dimension is determined by applying an EVD method, which can define the optimal bearing position through considering the limiting condition. Based on the estimated regression model, the optimal spindle size and bearing distance that can improve the primary natural frequency are obtained, and the influence of design factors on the natural frequency is also analyzed.
基金Project(10033135-2009-11) supported by the Korean Ministry of Knowledge Economy (MKE) through HNK. Co,Ltd.
文摘For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machine tool spindle system with geared transmission.By using the elementary method and Runge-Kutta method in Matlab,the eigenvalue problem was solved and the pure torsional vibration responses were obtained and examined.The results show that the spindle system cannot operate in the desired constant rotating speed as far as the gravitational unbalance torque is engaged,so it may cause bad effect on machining accuracy.And the torsional vibration increases infinitely near the resonant frequencies,so the spindle system cannot operate normally during these spindle speed ranges.
基金Project(2011-0027035) supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education,Science and Technology,Korea
文摘To increase the machine accuracy by improving the stiffness of bearings,a preload was applied to bearings.A variable preload technology was necessary to perform machining processes in both low and high speed regions.An automatic variable preload device was fabricated using an eccentric mass.By installing the fabricated device on a spindle,the effect of the automatic variable preload device on the performance of the spindle was analyzed.In the results of the vibration measurement of the spindle,the vibration is increased by 20%-37% according to measurement points at the maximum rotation speed of 5 000 r/min.And,in the results of the noise measurement of the spindle,the spindle rotation speed is increased by about 1.9% and 1.5% at the front and side of the spindle,respectively.Based on the results of this analysis,an improved method that reduces such effects on the performance of the spindle is proposed.
基金financially supported by Independent Innovation Research Fund of Wuhan University of Technology(No.2014-ND-B1-09)
文摘Making an analysis for vibration modal and frequency response of the lathe spindle,respectively by using finite element method based on ANSYS and experiment of CA6140 type lathe in machining,and the calculation results are compared and analyzed,which verified the accuracy of ANSYS method. Numerical simulation and experimental results show that: Spindle in the first order and fifth order are prone to resonance,but did not reach resonance,the low order natural frequency have more effect than the high order natural frequency of the spindle vibration; by the experiments can conclude that the maximum vibration of the main shaft in the working state is mainly concentrated in the vicinity of its two ends,therefore,the improved bearing is an important way to reduce the vibration of the main shaft and ensure the machining accuracy,and the research results can provide a theoretical reference for the structural optimization design of the lathe.
基金Supported by Doctoral Research Startup Project of Zhaotong University。
文摘Potato spindle tuber viroid(PSTVd)disease is one of the major diseases that threatens potato production.Therefore,an advanced,rapid and sensitive detection technology is needed to detect the disease for better control.In order to establish an easier nucleic acid spot hybridization(NASH)method,some studies were tried as the followings:(1)the pre-hybridization step of nucleic acid spot hybridization(NASH)was omitted compared with ordinary way;(2)RNA extraction(phenol extraction and Ames buffer extraction)methods were compared;(3)fixed RNA by UV lamp and oven compared with UV cross-linker;(4)hybridized the RNA in shaking incubator and so on.The results showed that RNA extracted by Ames buffer was more effective than by the phenol extraction method.Besides,the result of hybridization without pre-hybridization step was better than that with 1.5 h of pre-hybridization.The more important discovery was that the shaking incubator could replace the hybridization oven and the ordinary UV lamp could replace the UV cross-linker.After a long term repeated research and testing,a new hybridization system that could rapidly detect the PSTVd by improved NASH technique merely using common instruments and equipment was established.