期刊文献+
共找到38,455篇文章
< 1 2 250 >
每页显示 20 50 100
Novel Single-Frequency Diode Pumped Solid-State Lasers and Their Applications in Laser Ranging and Velocimetry 被引量:1
1
作者 YANG Su-Hui WU Ke-Ying WEI Guang-Hui 《Chinese Physics Letters》 SCIE CAS CSCD 2001年第7期906-908,共3页
Two models of laser diode pumped unidirectional single-frequency ring laser with maximum single frequency output power of 1 W and 780 mW are investigated.The Statistic linewidth of the free-run laser is measured to be... Two models of laser diode pumped unidirectional single-frequency ring laser with maximum single frequency output power of 1 W and 780 mW are investigated.The Statistic linewidth of the free-run laser is measured to be 2.1 kHz within 5μs by using a single mode fiber link.We use the monolithic laser to measure the angular speed of a spinning motor and simulate a linearly frequency modulated continuous-wave ladar system in laboratory. 展开更多
关键词 PUMPED laser FIBER
在线阅读 下载PDF
Solid-state Effects on Luminescence Properties of TADF Emitters Based on Pyrido[2,3-b]pyrazine-Dihydrophenazasilines Donor-acceptor Structures:Theoretical Study
2
作者 LI Yuheng LIU Meiqi +2 位作者 HOU Baoming PAN Yuyu YANG Bing 《发光学报》 北大核心 2025年第2期354-365,共12页
Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular st... Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules. 展开更多
关键词 solid-state effects thermally activated delayed fluorescence(TADF) theoretical study multi-scale simulation
在线阅读 下载PDF
Conversion-type cathode materials for high energy density solid-state lithium batteries
3
作者 Yuhao Ma Shihong Qing +4 位作者 Hongyu Liu Chuntao Ma Yuan Yu Chuang Yu Liping Wang 《Journal of Energy Chemistry》 2025年第1期409-425,共17页
Solid-state lithium batteries(SSLBs)are regarded as an essential growth path in energy storage systems due to their excellent safety and high energy density.In particular,SSLBs using conversion-type cathode materials ... Solid-state lithium batteries(SSLBs)are regarded as an essential growth path in energy storage systems due to their excellent safety and high energy density.In particular,SSLBs using conversion-type cathode materials have received widespread attention because of their high theoretical energy densities,low cost,and sustainability.Despite the great progress in research and development of SSLBs based on conversiontype cathodes,their practical applications still face challenges such as blocked ionic-electronic migration pathways,huge volume change,interfacial incompatibility,and expensive processing costs.This review focuses on the advantages and critical issues of coupling conversion-type cathodes with solid-state electrolytes(SSEs),as well as state-of-the-art progress in various promising cathodes(e.g.,FeS_(2),CuS,FeF_(3),FeF_(2),and S)in SSLBs.Furthermore,representative research on conversion-type solid-state full cells is discussed to offer enlightenment for their practical application.Significantly,the energy density exhibited by the S cathode stands out impressively,while sulfide SSEs and halide SSEs have demonstrated immense potential for coupling with conversion-type cathodes.Finally,perspectives on conversion-type cathodes are provided at the material,interface,composite electrode,and battery levels,with a view to accelerating the development of conversion-type cathodes for high-energy–density SSLBs. 展开更多
关键词 Conversion-type cathode Lithium-free cathode solid-state electrolyte solid-state lithium battery High energy density
在线阅读 下载PDF
Advances in solid-state NMR methods for studying RNA structures and dynamics
4
作者 Jinhan He Xiaole Liu Shenlin Wang 《Magnetic Resonance Letters》 2025年第1期64-74,共11页
Ribonucleic acid(RNA)structures and dynamics play a crucial role in elucidating RNA functions and facilitating the design of drugs targeting RNA and RNA-protein complexes.However,obtaining RNA structures using convent... Ribonucleic acid(RNA)structures and dynamics play a crucial role in elucidating RNA functions and facilitating the design of drugs targeting RNA and RNA-protein complexes.However,obtaining RNA structures using conventional biophysical techniques,such as Xray crystallography and solution nuclear magnetic resonance(NMR),presents challenges due to the inherent flexibility and susceptibility to degradation of RNA.In recent years,solid-state NMR(SSNMR)has rapidly emerged as a promising alternative technique for characterizing RNA structure and dynamics.SSNMR has several distinct advantages,including flexibility in sample states,the ability to capture dynamic features of RNA in solid form,and suitability to character RNAs in various sizes.Recent decade witnessed the growth of ^(1)H-detected SSNMR methods on RNA,which targeted elucidating RNA topology and base pair dynamics in solid state.They have been applied to determine the topology of RNA segment in human immunodeficiency virus(HIV)genome and the base pair dynamics of riboswitch RNA.These advancements have expanded the utility of SSNMR techniques within the RNA research field.This review provides a comprehensive discussion of recent progress in ^(1)H-detected SSNMR investigations into RNA structure and dynamics.We focus on the established ^(1)H-detected SSNMR methods,sample preparation protocols,and the implementation of rapid data acquisition approaches. 展开更多
关键词 solid-state NMR RNA STRUCTURE DYNAMICS Pulse sequences
在线阅读 下载PDF
In-cell dehydration of sodium manganese hexacyanoferrate cathode revealed by solid-state NMR
5
作者 Zonglin Li Xiaobing Lou +4 位作者 Shinuo Kang Dingming Liu Fushan Geng Ming Shen Bingwen Hu 《Magnetic Resonance Letters》 2025年第1期32-39,共8页
The hard-to-remove lattice water has been regarded as a significant obstacle impeding the practical use of Prussian blue analogue cathodes for sodium-ion batteries.This work monitored the electrochemical evolution of ... The hard-to-remove lattice water has been regarded as a significant obstacle impeding the practical use of Prussian blue analogue cathodes for sodium-ion batteries.This work monitored the electrochemical evolution of a hydrated monoclinic sodium manganese hexacyanoferrate cathode by solid-state nuclear magnetic resonance(NMR).For the first time,we established a correlation between the chemical shifts of ^(23)Na NMR signals and the presence or absence of lattice water within this cathode.Through this method,we verified the electrochemical dehydration process that coincides with the merging of two redox platforms and a phase transformation in the initial cycles.Furthermore,we discovered that the lattice water is completely removed after several-day cell rest following a single activation cycle. 展开更多
关键词 solid-state NMR DEHYDRATION Prussian blue analogues Sodium-ion batteries CATHODE
在线阅读 下载PDF
Research on power improvement of a LD directly-pumped mid-infrared pulse solid-state laser
6
作者 ZHANG Meng YANG Xi +5 位作者 GUO Jia-Wei CAI He WU Xin-Yang HAN Ju-Hong WANG Shun-Yan WANG You 《红外与毫米波学报》 CSCD 北大核心 2024年第6期820-826,共7页
An LD directly-pumped solid-state laser is considered to be one of the most promising mid-infrared light sources because of its simple principle,small size,and compact structure for the generation of mid-infrared(MIR)... An LD directly-pumped solid-state laser is considered to be one of the most promising mid-infrared light sources because of its simple principle,small size,and compact structure for the generation of mid-infrared(MIR)lasers in the 3-5µm band.However,the quantum defect of LD directly-pumped MIR solid-state lasers will be much larger than that of ordinary near-infrared LD pumped solid-state lasers,which may lead to thermal damage and limit their development.In order to solve this problem,the methods of reducing the specific surface area of the crystal and improving the thermal energy released by the crystal structure are discussed,and the opti⁃mal length of the laser crystal is determined.The cooling structures of barium yttrium fluoride laser crystals(Ho^(3+):BY_(2)F_(8))of different lengths were studied by thermal simulation using COMSOL software.The experimen⁃tal results show that the output power can be increased and the thermal stress in the laser crystal can be alleviated by using the laser crystal whose length is slightly shorter than that of the cooler.The final experiment shows that when the pump repetition rate is 15 Hz and the pulse width is 90µs,the single pulse energy is 7.28 mJ at the out⁃put wavelength of 3.9µm,which is about 3 times as large as that of the crystal with the length of 10 mm(2.81 mJ).Such results should be another breakthrough of our team since the first directly-pumped solid-state MIR laser was realized more than a year ago.It might pave the way for the construction of a feasible MIR laser in the near future. 展开更多
关键词 mid-infrared laser LD directly pumping solid state laser Ho:BYF laser crystal
在线阅读 下载PDF
Simultaneous all-solid-state multi-wavelength lasers——a promising pump source for generating highly coherent terahertz waves 被引量:1
7
作者 刘欢 徐德刚 姚建铨 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第3期1077-1084,共8页
A diode-end-pumped Nd:YAG dual-wavelength laser operating at 1319 and 1338 nm is demonstrated. The maximum average output power of the quasi-continuous wave linearly polarized dual-wavelength laser is obtained to be ... A diode-end-pumped Nd:YAG dual-wavelength laser operating at 1319 and 1338 nm is demonstrated. The maximum average output power of the quasi-continuous wave linearly polarized dual-wavelength laser is obtained to be 2.1 W at a repetition rate of 50 kHz with an output power instability of less than 0.38% and beam quality factor M^2 of 1.45. Using the two lines, the highly coherent and narrow linewidth terahertz radiation of 3.23 THz can be generated in an organic 4-N, N-dimethylamino-methyl-stilbazolium tosylate (DAST) crystal. Meanwhile, the multi-wavelength red laser at 659.5, 664 and 669 nm is generated by frequency doubling and sum frequency processes in a lithium triborate (LBO) crystal. The average red laser output power is enhanced up to 1.625 W at a repetition rate of 15 kHz with an output power instability of better than 0.53% and beam quality factor M^2 of 6.05. Using the three lines, it is possible to generate the multi-wavelength THz radiation of 3.3, 3.43 and 6.73 THz in an appropriate difference frequency crystal. 展开更多
关键词 end-pumped Nd:YAG laser dual-wavelength laser acousto-optic Q-switch terahertz wave
在线阅读 下载PDF
Energy transfer in solid-state dye lasers based on methyl methacrylate co-doped with sulforhodamine B and crystal violet
8
作者 R.G.Geethu Mani M.Basheer Ahamed 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期319-324,共6页
Laser action in methyl methacrylate (MMA) co-doped with sulforhodamine B and crystal violet dyes was investi- gated. The dye mixture was incorporated into a solid polymeric matrix and was pumped by a 532-nm Nd:YAG ... Laser action in methyl methacrylate (MMA) co-doped with sulforhodamine B and crystal violet dyes was investi- gated. The dye mixture was incorporated into a solid polymeric matrix and was pumped by a 532-nm Nd:YAG laser. Distributed feedback dye laser (DFDL) action was induced in the dye mixture using a prism arrangement both in the donor and acceptor regions by an energy transfer mechanism. Theoretically, the characteristics of acceptor and donor DFDLs, and the dependence of their pulse widths and output powers on acceptor-donor concentrations and pump power, were studied. Experimentally, the output energy of DFDL was measured at the emission peaks of donor and acceptor dyes for different pump powers and different acceptor-donor concentrations. Tuning of the output wavelength was achieved by varying the period of the gain modulation of the laser medium. The laser wavelength showed continuous tunability from 563 nm to 648 nm. 展开更多
关键词 sulforhodamine B crystal violet distributed feedback dye laser solid state distributed feedbackdye laser
在线阅读 下载PDF
12.6μm-Thick Asymmetric Composite Electrolyte with Superior Interfacial Stability for Solid-State Lithium-Metal Batteries 被引量:3
9
作者 Zheng Zhang Jingren Gou +4 位作者 Kaixuan Cui Xin Zhang Yujian Yao Suqing Wang Haihui Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期397-409,共13页
Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage ... Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes,and to minimize the electrolyte thickness to achieve highenergy-density of SSLMBs.Herein,we develop an ultrathin(12.6μm)asymmetric composite solid-state electrolyte with ultralight areal density(1.69 mg cm^(−2))for SSLMBs.The electrolyte combining a garnet(LLZO)layer and a metal organic framework(MOF)layer,which are fabricated on both sides of the polyethylene(PE)separator separately by tape casting.The PE separator endows the electrolyte with flexibility and excellent mechanical properties.The LLZO layer on the cathode side ensures high chemical stability at high voltage.The MOF layer on the anode side achieves a stable electric field and uniform Li flux,thus promoting uniform Li^(+)deposition.Thanks to the well-designed structure,the Li symmetric battery exhibits an ultralong cycle life(5000 h),and high-voltage SSLMBs achieve stable cycle performance.The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg^(−1)/773.1 Wh L^(−1).This simple operation allows for large-scale preparation,and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs. 展开更多
关键词 solid-state lithium metal batteries Composite solid-state electrolyte Ultrathin asymmetric structure Pouch cells
在线阅读 下载PDF
Advances in All-Solid-State Lithium-Sulfur Batteries for Commercialization 被引量:2
10
作者 Birhanu Bayissa Gicha Lemma Teshome Tufa +2 位作者 Njemuwa Nwaji Xiaojun Hu Jaebeom Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期209-246,共38页
Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward ... Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility.In particular,all-solid-state lithium-sulfur batteries(ASSLSBs)that rely on lithium-sulfur reversible redox processes exhibit immense potential as an energy storage system,surpassing conventional lithium-ion batteries.This can be attributed predominantly to their exceptional energy density,extended operational lifespan,and heightened safety attributes.Despite these advantages,the adoption of ASSLSBs in the commercial sector has been sluggish.To expedite research and development in this particular area,this article provides a thorough review of the current state of ASSLSBs.We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs,explore the fundamental scientific principles involved,and provide a comprehensive evaluation of the main challenges faced by ASSLSBs.We suggest that future research in this field should prioritize plummeting the presence of inactive substances,adopting electrodes with optimum performance,minimizing interfacial resistance,and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs. 展开更多
关键词 All-solid-state lithium-sulfur batteries COMMERCIALIZATION Enhancement strategies solid-state electrolytes Sulfurbased cathodes
在线阅读 下载PDF
A Review on Engineering Design for Enhancing Interfacial Contact in Solid-State Lithium–Sulfur Batteries 被引量:1
11
作者 Bingxin Qi Xinyue Hong +4 位作者 Ying Jiang Jing Shi Mingrui Zhang Wen Yan Chao Lai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期219-252,共34页
The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high in... The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high interfacial impedances existing between the SSEs and the electrodes(both lithium anodes and sulfur cathodes)hinder the charge transfer and intensify the uneven deposition of lithium,which ultimately result in insufficient capacity utilization and poor cycling stability.Hence,the reduction of interfacial resistance between SSEs and electrodes is of paramount importance in the pursuit of efficacious solid-state batteries.In this review,we focus on the experimental strategies employed to enhance the interfacial contact between SSEs and electrodes,and summarize recent progresses of their applications in solidstate Li–S batteries.Moreover,the challenges and perspectives of rational interfacial design in practical solid-state Li–S batteries are outlined as well.We expect that this review will provide new insights into the further technique development and practical applications of solid-state lithium batteries. 展开更多
关键词 solid-state lithium–sulfur batteries solid-state electrolytes Electrode/electrolyte interface Interfacial engineering Enhancing interfacial contact
在线阅读 下载PDF
Atom substitution of the solid-state electrolyte Li_(10)GeP_(2)S_(12)for stabilized all-solid-state lithium metal batteries 被引量:1
12
作者 Zijing Wan Xiaozhen Chen +3 位作者 Ziqi Zhou Xiaoliang Zhong Xiaobing Luo Dongwei Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期28-38,I0002,共12页
Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical applicati... Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes. 展开更多
关键词 Atom substitution solid-state electrolyte Machine learning Stabilized interface
在线阅读 下载PDF
A dynamic database of solid-state electrolyte(DDSE)picturing all-solid-state batteries 被引量:2
13
作者 Fangling Yang Egon Campos dos Santos +5 位作者 Xue Jia Ryuhei Sato Kazuaki Kisu Yusuke Hashimoto Shin-ichi Orimo Hao Li 《Nano Materials Science》 EI CAS CSCD 2024年第2期256-262,共7页
All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations ... All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations to search for high ion-conducting solid-state electrolytes have attracted broad concern.However,obtaining SSEs with high ionic conductivity is challenging due to the complex structural information and the less-explored structure-performance relationship.To provide a solution to these challenges,developing a database containing typical SSEs from available experimental reports would be a new avenue to understand the structureperformance relationships and find out new design guidelines for reasonable SSEs.Herein,a dynamic experimental database containing>600 materials was developed in a wide range of temperatures(132.40–1261.60 K),including mono-and divalent cations(e.g.,Li^(+),Na^(+),K^(+),Ag^(+),Ca^(2+),Mg^(2+),and Zn^(2+))and various types of anions(e.g.,halide,hydride,sulfide,and oxide).Data-mining was conducted to explore the relationships among different variates(e.g.,transport ion,composition,activation energy,and conductivity).Overall,we expect that this database can provide essential guidelines for the design and development of high-performance SSEs in ASSB applications.This database is dynamically updated,which can be accessed via our open-source online system. 展开更多
关键词 solid-state electrolyte(SSE) All-solid-state battery(ASSB) Ionic conductivity Dynamic database Machine learning
在线阅读 下载PDF
Enhanced High-Temperature Cycling Stability of Garnet-Based All Solid-State Lithium Battery Using a Multi-Functional Catholyte Buffer Layer 被引量:1
14
作者 Leqi Zhao Yijun Zhong +2 位作者 Chencheng Cao Tony Tang Zongping Shao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期59-73,共15页
The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder... The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder their practical implementation.Polymer has been used extensively to improve the cathode-electrolyte interface in garnet-based all-solid-state LIBs(ASSLBs),while it introduces new concerns about thermal stability.In this study,we propose the incorporation of a multi-functional flame-retardant triphenyl phos-phate additive into poly(ethylene oxide),acting as a thin buffer layer between LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode and garnet electro-lyte.Through electrochemical stability tests,cycling performance evaluations,interfacial thermal stability analysis and flammability tests,improved thermal stability(capacity retention of 98.5%after 100 cycles at 60℃,and 89.6%after 50 cycles at 80℃)and safety characteristics(safe and stable cycling up to 100℃)are demonstrated.Based on various materials characterizations,the mechanism for the improved thermal stability of the interface is proposed.The results highlight the potential of multi-functional flame-retardant additives to address the challenges associated with the electrode-electrolyte interface in ASSLBs at high temperature.Efficient thermal modification in ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern. 展开更多
关键词 solid-state battery Cathode electrolyte interlayer Flame-retardant additive Cycling stability Interfacial stability
在线阅读 下载PDF
In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries 被引量:1
15
作者 Huanhui Chen Xing Cao +6 位作者 Moujie Huang Xiangzhong Ren Yubin Zhao Liang Yu Ya Liu Liubiao Zhong Yejun Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期282-292,I0007,共12页
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ... The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries. 展开更多
关键词 solid-state lithium batteries Composite solid electrolyte In-situ polymerization Interfacial passivation layer Self-adaptability
在线阅读 下载PDF
A 4.8-W M^2 = 4.6 Continuous-Wave Intracavity Sum-Frequency Diode-Pumped Solid-State Yellow Laser 被引量:4
16
作者 薄勇 耿爱丛 +5 位作者 鲁远甫 杨晓冬 彭钦军 崔前进 崔大复 许祖彦 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第6期1494-1497,共4页
A yellow continuous wave with beam quality M^2= 4.6 and output power of 4.8 W at 589nm is generated by intracavity sum-frequency mixing of 1064 nm and 1319 nm radiations of a Nd:YAG laser. To achieve high beam qualit... A yellow continuous wave with beam quality M^2= 4.6 and output power of 4.8 W at 589nm is generated by intracavity sum-frequency mixing of 1064 nm and 1319 nm radiations of a Nd:YAG laser. To achieve high beam quality at high power, thermally near-unstable flat-flat resonators with two-rod birefringence compensation are designed to obtain the large fundamental mode size inside the Nd:YAG rods and the same beam width inside the KTP crystal. The optimal intracavity power ratio of both 1064nm and 1319nm beams is also considered. The output power fluctuation of the yellow laser remains less than 5% in four hours. 展开更多
关键词 ROD laser GENERATION RESONATOR LIGHT
在线阅读 下载PDF
Self-Starting Passively Mode-Locking All-Solid-State Laser with GaAs Absorber Grown at Low Temperature 被引量:2
17
作者 贾玉磊 令维军 +2 位作者 魏志义 王勇刚 马骁宇 《Chinese Physics Letters》 SCIE CAS CSCD 2005年第10期2575-2577,共3页
We realize a stable self-starting passively mode-locking all-solid-state laser by using novel GaAs mirrors as the absorber and output coupler. The GaAs mirror is grown by the technology of metal organic chemical vapou... We realize a stable self-starting passively mode-locking all-solid-state laser by using novel GaAs mirrors as the absorber and output coupler. The GaAs mirror is grown by the technology of metal organic chemical vapour deposition at low temperature. With such an absorber as the output coupler in the laser resonator, laser pulses with duration of 42ps were generated at a repetition rate of 400MHz, corresponding to the average power of 590mW. 展开更多
关键词 SEMICONDUCTOR SATURABLE ABSORBERS ND-YLF lasers ND-GDVO4 laser YAG laser MIRROR ND-YVO4
在线阅读 下载PDF
SEI/dead Li-turning capacity loss for high-performance anode-free solid-state lithium batteries
18
作者 Qianwen Yin Tianyu Li +3 位作者 Hongzhang Zhang Guiming Zhong Xiaofei Yang Xianfeng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期145-152,共8页
Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay ... Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay in AF-SSLBs,either determined by dead Li or solid electrolyte interface(SEI),limits the proposal of effective strategies to prolong cycling life.To clarify the underlying mechanism,herein,the evolution of SEI and dead Li is quantitatively analyzed by a solid-state nuclear magnetic resonance(ss-NMR)technology in a typical LiPF6-based polymer electrolyte.The results show that the initial capacity loss is attributed to the formation of SEI,while the dead Li dominates the following capacity loss and the growth rate is 0.141 mA h cm^(−2)cycle−1.To reduce the active Li loss,the combination of inorganic-rich SEI and self-healing electrostatic shield effect is proposed to improve the reversibility of Li deposition/dissolution behavior,which reduces the capacity loss rate for the initial SEI and following dead Li generation by 2.3 and 20.1 folds,respectively.As a result,the initial Coulombic efficiency(ICE)and stable CE increase by 15.1%and 15.3%in Li-Cu cells,which guides the rational design of high-performance AF-SSLBs. 展开更多
关键词 solid-state lithium batteries solid-state NMR Anode-free SEI Dead Li
在线阅读 下载PDF
A Q-Swicthed All-Solid-State Single-Longitudinal-Mode Laser with Adjustable Pulse-Width and High Repetition Rate 被引量:1
19
作者 周军 许世忠 +2 位作者 侯霞 韦辉 陈卫标 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第1期129-131,共3页
A single-longitudinal-mode (SLM) laser-diode pumped Nd: YAG laser with adjustable pulse width is developed by using the techniques of pre-lasing and changing polarization of birefingent crystal The Q-switching volt... A single-longitudinal-mode (SLM) laser-diode pumped Nd: YAG laser with adjustable pulse width is developed by using the techniques of pre-lasing and changing polarization of birefingent crystal The Q-switching voltage is triggered by the peak of the pre-lasing pulse to achieve the higher stability of output pulse energy. The output energy of more than I mJ is obtained with output energy stability of 3% (rms) at lOO Hz. The pulsewidth can be adjusted from 30ns to 300ns by changing the Q-switching voltage. The probability of putting out single-longitudinal-mode pulses is almost 100%. The laser can be run over four hours continually without mode hopping. 展开更多
关键词 ND-YAG laser Q-SWITCHED laser EFFICIENT OPERATION
在线阅读 下载PDF
Interface-reinforced solid-state electrochromic Li-ion batteries enabled by in-situ liquid-solid transitional plastic glues
20
作者 Ruidong Shi Kaiyue Liu +3 位作者 Mingxue Zuo Mengyang Jia Zhijie Bi Xiangxin Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期96-104,共9页
The electrochromic Li-ion batteries(ELIBs) combine the functions of electrochromism and energy storage,realizing the display of energy-storage levels by visual signals. However, the accompanying interfacial issues inc... The electrochromic Li-ion batteries(ELIBs) combine the functions of electrochromism and energy storage,realizing the display of energy-storage levels by visual signals. However, the accompanying interfacial issues including physical contact and(electro)chemical stability should be taken into account when the conventional liquid/gel electrolytes are replaced with solid-state counterparts. Herein, the in-situ liquid-solid transitional succinonitrile(SCN) plastic glues are constructed between electrodes and poly(ethylene oxide)(PEO) polymer electrolytes, enabling an interface-reinforced solid-state ELIB.Specifically, the liquid SCN precursor can adequately wet electrode/PEO interfaces at high temperature,while it returns back to solid state at room temperature, leading to seamless interfacial contact and smooth ionic transfer without changing the solid state of the device. Moreover, the SCN interlayer suppresses the direct contact of PEO with electrodes containing high-valence metal ions, evoking the improved interfacial stability by inhibiting the oxidation of PEO. Therefore, the resultant solid-state ELIB with configuration of LiMn_(2)O_(4)/SCN-PEO-SCN/WO_(3) delivers an initial discharge capacity of 111 m A h g^(-1) along with a capacity retention of 88.3% after 200 cycles at 30 ℃. Meanwhile, the electrochromic function is integrated into the device by distinguishing its energy-storage levels through distinct color changes. This work proposes a promising solid-state ELIB with greatly reinforced interfacial compatibility by introducing in-situ solidified plastic glues. 展开更多
关键词 Electrochromic Li-ion batteries Interfacial issues solid-state electrolytes Visualization
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部