锂离子电池的荷电状态(state of charge,SOC)在电池均衡、优化能量使用等方面具有重要作用。针对基于模型的SOC估计方法中状态空间方程非线性导致计算量大的问题,提出了使用门控循环单元(gated recurrent units,GRU)软测量SOC,并以此为...锂离子电池的荷电状态(state of charge,SOC)在电池均衡、优化能量使用等方面具有重要作用。针对基于模型的SOC估计方法中状态空间方程非线性导致计算量大的问题,提出了使用门控循环单元(gated recurrent units,GRU)软测量SOC,并以此为观测量构建线性状态空间方程,进而使用卡尔曼滤波(Kalman filter,KF)估计SOC的方法。在随机驾驶循环工况下,所提出方法的SOC估计最大绝对误差为0.017,同时具有较快的估计速度。进一步研究发现,不同充放电倍率下电池模型的参数具有很大差异,导致基于模型的SOC估计方法在复杂情况下的估计精度较低,而所提出的GRU-KF方法因为不需要精确的电池模型,更能适应复杂的工况。展开更多
准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法...准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法应用的复杂性,提出了一种适用于在线监测应用场景的基于蜣螂优化算法和自适应无迹卡尔曼滤波的SOC估计算法。将二阶Thevenin等效电路作为蓄电池的模型,利用蜣螂优化算法对该模型的关键参数进行自适应辨识,根据所辨识的参数,利用自适应无迹卡尔曼滤波算法对SOC进行估算。为了验证该算法的有效性,利用锂离子电池不同动态工况的实验数据进行了测试。实验结果表明,在初始参数设置模糊或不准确的情况下,该算法依然能够自适应地获取精度更高的SOC估计结果,具有更好的鲁棒性。展开更多
锂离子电池常被作为储能元件以实现电能的存储和转化,然而其荷电状态(state of charge,SOC)和健康状态(state of health,SOH)无法被直接测量。为了实现锂离子电池SOC和SOH联合估算,该文分析SOC和SOH之间的关联性,并提出一种基于深度学...锂离子电池常被作为储能元件以实现电能的存储和转化,然而其荷电状态(state of charge,SOC)和健康状态(state of health,SOH)无法被直接测量。为了实现锂离子电池SOC和SOH联合估算,该文分析SOC和SOH之间的关联性,并提出一种基于深度学习的锂离子电池SOC和SOH联合估算方法。该方法能够基于门控循环单元循环神经网络(recurrent neural network with gated recurrent unit,GRU-RNN)和卷积神经网络(convolutional neural network,CNN),利用锂离子电池电压、电流、温度,实现锂离子电池全使用周期内SOC和SOH的同时估算,而且由于将锂离子电池的SOH估算值考虑到SOC估算中,能够消除锂离子电池老化因素对锂离子电池SOC估算造成的负面影响,从而提升SOC估算精度。两个锂离子电池测试数据集上的实验结果表明,提出的估算方法能够在不同温度和不同工况下实现锂离子电池全使用周期SOC和SOH联合估算,且获得较高的精度。展开更多
文摘准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法应用的复杂性,提出了一种适用于在线监测应用场景的基于蜣螂优化算法和自适应无迹卡尔曼滤波的SOC估计算法。将二阶Thevenin等效电路作为蓄电池的模型,利用蜣螂优化算法对该模型的关键参数进行自适应辨识,根据所辨识的参数,利用自适应无迹卡尔曼滤波算法对SOC进行估算。为了验证该算法的有效性,利用锂离子电池不同动态工况的实验数据进行了测试。实验结果表明,在初始参数设置模糊或不准确的情况下,该算法依然能够自适应地获取精度更高的SOC估计结果,具有更好的鲁棒性。
文摘锂离子电池常被作为储能元件以实现电能的存储和转化,然而其荷电状态(state of charge,SOC)和健康状态(state of health,SOH)无法被直接测量。为了实现锂离子电池SOC和SOH联合估算,该文分析SOC和SOH之间的关联性,并提出一种基于深度学习的锂离子电池SOC和SOH联合估算方法。该方法能够基于门控循环单元循环神经网络(recurrent neural network with gated recurrent unit,GRU-RNN)和卷积神经网络(convolutional neural network,CNN),利用锂离子电池电压、电流、温度,实现锂离子电池全使用周期内SOC和SOH的同时估算,而且由于将锂离子电池的SOH估算值考虑到SOC估算中,能够消除锂离子电池老化因素对锂离子电池SOC估算造成的负面影响,从而提升SOC估算精度。两个锂离子电池测试数据集上的实验结果表明,提出的估算方法能够在不同温度和不同工况下实现锂离子电池全使用周期SOC和SOH联合估算,且获得较高的精度。