Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-G...Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and the Newdon-Armijio (NA) algorithm easily, however the accuracy of sigmoid function is not as good as that of polyno- mial smooth function. Furthermore, the method cannot reduce the influence of outliers or noise in dataset. A fuzzy smooth support vector machine (FSSVM) with fuzzy membership and polynomial smooth functions is introduced into the SVM. The fuzzy member- ship considers the contribution rate of each sample to the optimal separating hyperplane and makes the optimization problem more accurate at the inflection point. Those changes play a positive role on trials. The results of the experiments show that those FSSVMs can obtain a better accuracy and consume the shorter time than SSVM and lagrange support vector machine (LSVM).展开更多
Support vector machines (SVMs) have been extensively studied and have shown remarkable success in many applications. A new family of twice continuously differentiable piecewise smooth functions are used to smooth th...Support vector machines (SVMs) have been extensively studied and have shown remarkable success in many applications. A new family of twice continuously differentiable piecewise smooth functions are used to smooth the objective function of uncon- strained SVMs. The three-order piecewise smooth support vector machine (TPWSSVMd) is proposed. The piecewise functions can get higher and higher approximation accuracy as required with the increase of parameter d. The global convergence proof of TPWSSVMd is given with the rough set theory. TPWSSVMd can efficiently handle large scale and high dimensional problems. Nu- merical results demonstrate TPWSSVMa has better classification performance and learning efficiency than other competitive base- lines.展开更多
This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emerg...This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.展开更多
A semi-supervised vector machine is a relatively new learning method using both labeled and unlabeled data in classifi- cation. Since the objective function of the model for an unstrained semi-supervised vector machin...A semi-supervised vector machine is a relatively new learning method using both labeled and unlabeled data in classifi- cation. Since the objective function of the model for an unstrained semi-supervised vector machine is not smooth, many fast opti- mization algorithms cannot be applied to solve the model. In order to overcome the difficulty of dealing with non-smooth objective functions, new methods that can solve the semi-supervised vector machine with desired classification accuracy are in great demand. A quintic spline function with three-times differentiability at the ori- gin is constructed by a general three-moment method, which can be used to approximate the symmetric hinge loss function. The approximate accuracy of the quintic spiine function is estimated. Moreover, a quintic spline smooth semi-support vector machine is obtained and the convergence accuracy of the smooth model to the non-smooth one is analyzed. Three experiments are performed to test the efficiency of the model. The experimental results show that the new model outperforms other smooth models, in terms of classification performance. Furthermore, the new model is not sensitive to the increasing number of the labeled samples, which means that the new model is more efficient.展开更多
Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in gen...Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in general,slowly varying and can be modeled by autoregressive models. However, industrial processes always show typical nonstationary nature, which may bring two challenges: how to capture fault degradation information and how to model nonstationary processes. To address the critical issues, a novel fault degradation modeling and online fault prognostic strategy is developed in this paper. First, a fault degradation-oriented slow feature analysis(FDSFA) algorithm is proposed to extract fault degradation directions along which candidate fault degradation features are extracted. The trend ability assessment is then applied to select major fault degradation features. Second, a key fault degradation factor(KFDF) is calculated to characterize the fault degradation tendency by combining major fault degradation features and their stability weighting factors. After that, a time-varying regression model with temporal smoothness regularization is established considering nonstationary characteristics. On the basis of updating strategy, an online fault prognostic model is further developed by analyzing and modeling the prediction errors. The performance of the proposed method is illustrated with a real industrial process.展开更多
The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES...The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element(MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index(k) and maximum porosity distributions(U) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail.展开更多
A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-w...A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.展开更多
An Approximate Voronoi Boundary Network is constructed as the environmental model by way of enlar-ging the obstacle raster. The connectivity of the path network under complex environment is ensured through build-ing t...An Approximate Voronoi Boundary Network is constructed as the environmental model by way of enlar-ging the obstacle raster. The connectivity of the path network under complex environment is ensured through build-ing the second order Approximate Voronoi Boundary Network after adding virtual obstacles at joint-close grids. Thismethod embodies the network structure of the free area of environment with less nodes, so the complexity of pathplanning problem is reduced largely. An optimized path for mobile robot under complex environment is obtainedthrough the Genetic Algorithm based on the elitist rule and re-optimized by using the path-tightening method. Sincethe elitist one has the only authority of crossover, the management of one group becomes simple, which makes forobtaining the optimized path quickly. The Approximate Voronoi Boundary Network has a good tolerance to the im-precise a priori information and the noises of sensors under complex environment. Especially it is robust in dealingwith the local or partial changes, so a small quantity of dynamic obstacles is difficult to alter the overall character ofits connectivity, which means that it can also be adopted in dynamic environment by fusing the local path planning.展开更多
In order to handle the semi-supervised problem quickly and efficiently in the twin support vector machine (TWSVM) field, a semi-supervised twin support vector machine (S2TSVM) is proposed by adding the original unlabe...In order to handle the semi-supervised problem quickly and efficiently in the twin support vector machine (TWSVM) field, a semi-supervised twin support vector machine (S2TSVM) is proposed by adding the original unlabeled samples. In S2TSVM, the addition of unlabeled samples can easily cause the classification hyper plane to deviate from the sample points. Then a centerdistance principle is proposed to pre-classify unlabeled samples, and a pre-classified S2TSVM (PS2TSVM) is proposed. Compared with S2TSVM, PS2TSVM not only improves the problem of the samples deviating from the classification hyper plane, but also improves the training speed. Then PS2TSVM is smoothed. After smoothing the model, the pre-classified smooth S2TSVM (PS3TSVM) is obtained, and its convergence is deduced. Finally, nine datasets are selected in the UCI machine learning database for comparison with other types of semi-supervised models. The experimental results show that the proposed PS3TSVM model has better classification results.展开更多
Aim This study sought to investigate the effect of chronic nicotine exposure on vascular function and to identify the underlying mechanisms. Methods Isolated organ bath studies were performed to examine the effects of...Aim This study sought to investigate the effect of chronic nicotine exposure on vascular function and to identify the underlying mechanisms. Methods Isolated organ bath studies were performed to examine the effects of chronic nicotine exposure on vascular reactivity of the aorta in Sprague-Dawley rats. We used various analogues and blockers of the cGMP-dependent protein kinase (PKG) pathway as well as molecular techniques to identify the un- derlying mechanisms. Results Chronic nicotine exposure reduced periaortic fat and specifically enhanced smooth muscle relaxation, although aortic adventitial fat and endothelium function were not affected. The soluble guanylyl cyclase inhibitor ODQ or PKG inhibitor Rp-8-Br-PET-cGMP abolished the difference in relaxation between the sa- line and nicotine group, and the cGMP analogue 8-Br-cGMP mimicked the difference in relaxation. PKG protein expression and activity were not altered after nicotine treatment. Conclusion Chronic nicotine exposure enhances vascular smooth muscle relaxation through a cGMP-dependent PKG pathway. Our findings provide novel insights in- to nicotine pharmacology.展开更多
Background and Aim Vascular smooth muscle cell (SMC) phenotype change is a hallmark of vascu-lar remodeling, which can be regulated via MicroRNAs (miRNAs)-dependent mechanism. We recently identified Asymmetric dim...Background and Aim Vascular smooth muscle cell (SMC) phenotype change is a hallmark of vascu-lar remodeling, which can be regulated via MicroRNAs (miRNAs)-dependent mechanism. We recently identified Asymmetric dimethylarginine (ADMA) positively correlates to vascular remodeling-based diseases. Here, we hy-pothesized that ADMA induces SMC phenotypic change via a miRNA-dependent mechanism. Methods and Results Microarray analysis enabled the identification of 7 deregulated microRNAs in ADMA-treated human aortic artery smooth muscle cells (hASMCs). miR-182 was validated by real-time-PCR. Isobaric tags for relative and absolute quantitation (iTRAQ) based analysis of the hASMC proteome revealed that transfection of an miR-182 inhibitor sig- nificantly increased myeloid-associated differentiation marker (MYADM), which was verified using Western blot and reporter activity quantization with the MYADM 3'-UTR dual-luciferase reporter system, miR-182 knockdown further repressed Sprouty2 and enhanced MYADM, leading to ERICZMAP kinase-dependent and MYADM-depend- ent hASMC phenotypic change including proliferation, migration and differentiation marker gene expression change. In vivo, adeno-miR-182 markedly suppressed carotid neointimal formation by using balloon-injured rat carotid artery model, specifically via decreased MYADM expression. Atherosclerotic lesions from patients with high ADMA plas- ma levels exhibited decreased miR-182 expression levels and elevated MYADM expression levels. In patients with coronary heart disease (n- 164), the miR-182 expression level in plasma was negatively correlated with the plas- ma ADMA levels. Conclusions miR-182 is a novel SMC phenotypic modulator by targeting MYADM and can be a potential therapeutic target combating vascular remodeling-associated diseases. Reduced plasma miR-182 levels might be a new predictor of high vascular remodeling risk especially in patient with coronary heart disease.展开更多
Objective The apoptosis of vascular smooth muscle cells(VSMCs)influenced by abnormal cyclic stretch is crucial for vascular remodeling during hypertension.We explored that the causes of mechano-responsive lamin A/C ch...Objective The apoptosis of vascular smooth muscle cells(VSMCs)influenced by abnormal cyclic stretch is crucial for vascular remodeling during hypertension.We explored that the causes of mechano-responsive lamin A/C changingin aonormai cyclic stretcn and its roles in VSMC apoptosis.Methods and results Our previous vascular proteomics study revealed that LaminA/C is mechano-sensitive molecule.When VSMCs are subjected to cyclic stretch,the expression of LaminA/C is significantly changed which participates dysfunctions of VSMCs during hypertension.However,the molecular mechanism involved in regulation of LaminA/C expression and the role of LaminA/C in the VSMC apoptosis during cyclic stretch application are still unclear.In the present study,VSMCs were subjected to different amplitudes of cyclic steetch in vitro:5%cyclic stretch(physiological strain)or 15%cyclic stretch(pathological strain).The expression of 2 different selective cleavage isomers of LaminA/C,i.e.LaminA and LaminC,and the apoptosis of VSMCs were detected.The results showed that compared with 5%group,15%cyclic stretch significantly decreased the expression of LaminA and LaminC,and promoted the apoptosis of VSMCs.Using specific small interfering RNA(siRNA)transfection which targets on LMNA the encoding gene of LaminA/C,the expression of LaminA and LaminC in VSMCs was significantly decreased,and the apoptosis was significantly increased.In order to study the molecular mechanism involved in cyclic stretch regulating the expression of LaminA/C,we focused on the microRNA(miR).Bioinformatics analysis showed that the 3’untranslated region(3’UTR)of LMNA has two potential binding sites to miR-124-3p.Double luciferase reported system revealed that both sites have binding abilities to miR-124-3p.Under static condition,miR-124-3p inhibitor significantly up-regulated the expression levels of LaminA and LaminC,while the miR-124-3p mimics significantly down-regulated them.RT-PCR results showed that 15%cyclic stretch significantly up-regulated the expression of miR-124-3p compared with 5%cyclic stretch.Furthermore,in order to study the role of changeed LaminA/C in VSMC apoptosis,LMNA-specific siRNA was transfected to repress the expression of LaminA/C in VSMCs,and Protein/DNA microarray was used to detecte the activity of transcription factors.The transcription factors whose activity were changed significantly(increase or decrease more than 2 times)were analyzed by cluster analysis and ingenurity pathway analysis(IPA).Six transcription factors associated with apoptosis were screened,in which TP53 was activated by the specific siRNA transfection and the other 5 were inavtived,including TP53,CREB1,MYC,STAT1/5/6 and JUN.Using abdominal aorta coarctation hypertensive model,the change of miR-124-3p in VSMCs was explored in vivo.A marked increase of miR-124-3p in thoracic aorta was revealed compared with the sham-operated controls,and in situ FISH revealed that this increase was mainly in the VSMCs.Conclusions The present study suggest that abnormally increased cyclic stretch(15%)up-regulates the expression of miR-124-3p in VSMCs,which subsequently targets on the 3’UTR of LMNA and decreases the expression of nuclear envelope protein LaminA/C;the repressed LaminA/C may play an important role in the apoptosis of VSMCs by regulating the activity of virious transcription factors,such as TP53,CREB1,MYC,STAT1/5/6 and JUN.The present study may provide a new insight into understanding the molecular mechanisms of vascular remodeling.展开更多
Aim Angiotensin II (AngII) induces vascular smooth muscle cell (VSMC) migration and growth, which is responsible for vascular remodeling during some cardiovascular diseases. It has been demonstrated to activate a ...Aim Angiotensin II (AngII) induces vascular smooth muscle cell (VSMC) migration and growth, which is responsible for vascular remodeling during some cardiovascular diseases. It has been demonstrated to activate a C1 current, but the underlying mechanism is not clear. Methods Whole-cell patch clamp, co-immunoprecipitation (co-IP), site-specific mutagenesis, angiotensinII-infusion hypertensive mice model were used. Results In VSMCs, AngII could induce a C1C-3-dependent C1- current that was abolished in C1C-3 null mice. The activation mechanism of this AngII-induced C1- current was ascribed to the interaction between C1C-3 and Rho-kinase 2 (ROCIL2), as re- vealed by N-terminal or C-terminal truncation of C1C-3, ROCIC2 siRNA and Co-IP experiments. Then we searched for and identified the phosphorylation site of C1C-3 at threonine 532 is critical for AngII-induced C1- current and VSMC migration through ROCK. The C1C-3 T532D mutant (mutation of threonine 532 to aspartate), mimicking the phos- phorylation state of C1C-3, significantly potentiated AngII-induced C1- current and VSMC migration; while C1C-3 T532A (mutation of threonine 532 to alanine) had the opposite effects. Furthermore, we found a remarkably de- creased AngII-induced VSMC migration in C1C-3 null mice that is insensitive to Y27632, an inhibitor of ROCIL2. In addition, AngII-induced cerebrovascular remodeling was ameliorated in C1C-3 null mice, possibly by ROCIL2 path- way. Conclusions C1C-3 protein phosphorylation at threonine 532 by ROCIL2 is required for AngII-induced C1- cur- rent and VSMC migration that are involved in AngII-induced hypertensive vascular remodeling.展开更多
Norepinephrine(NE)endogenously released following electrical field stimulation(prazosin and TTX sensitive responses),produced a biphasic contraction of the rat vas deferens(RVD).The initial transient contraction was d...Norepinephrine(NE)endogenously released following electrical field stimulation(prazosin and TTX sensitive responses),produced a biphasic contraction of the rat vas deferens(RVD).The initial transient contraction was decreased by 30μmol/L ryanodine andμmol/L nifedipine while the secondary component was abolished by 2μmol/L nifedipine but increased by 30μmol/L ryanodine.Exogenously added NE produced biphasic contractions of the RVD.These contractions were inhibited by 2μmol/L nifedipine.Ryanodine(30μmol/L)decreased both phases by about 50%.We conclude that ryanodine binding sites reside in RVD endoplasmic reticulum(ER).There was a lack of uniformity in the effect of ryanodine against different phases of alpha-adrenergic stimulation may be indicative of two modes of stimulation-contraction coupling process related to this stimulation.展开更多
基金supported by the National Natural Science Foundation of China (60974082)
文摘Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and the Newdon-Armijio (NA) algorithm easily, however the accuracy of sigmoid function is not as good as that of polyno- mial smooth function. Furthermore, the method cannot reduce the influence of outliers or noise in dataset. A fuzzy smooth support vector machine (FSSVM) with fuzzy membership and polynomial smooth functions is introduced into the SVM. The fuzzy member- ship considers the contribution rate of each sample to the optimal separating hyperplane and makes the optimization problem more accurate at the inflection point. Those changes play a positive role on trials. The results of the experiments show that those FSSVMs can obtain a better accuracy and consume the shorter time than SSVM and lagrange support vector machine (LSVM).
基金supported by the National Natural Science Foundation of China(6110016561100231+6 种基金5120530961472307)the Natural Science Foundation of Shaanxi Province(2012JQ80442014JM83132010JQ8004)the Foundation of Education Department of Shaanxi Province(2013JK1096)the New Star Team of Xi’an University of Posts and Telecommunications
文摘Support vector machines (SVMs) have been extensively studied and have shown remarkable success in many applications. A new family of twice continuously differentiable piecewise smooth functions are used to smooth the objective function of uncon- strained SVMs. The three-order piecewise smooth support vector machine (TPWSSVMd) is proposed. The piecewise functions can get higher and higher approximation accuracy as required with the increase of parameter d. The global convergence proof of TPWSSVMd is given with the rough set theory. TPWSSVMd can efficiently handle large scale and high dimensional problems. Nu- merical results demonstrate TPWSSVMa has better classification performance and learning efficiency than other competitive base- lines.
文摘This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.
基金supported by the Fundamental Research Funds for University of Science and Technology Beijing(FRF-BR-12-021)
文摘A semi-supervised vector machine is a relatively new learning method using both labeled and unlabeled data in classifi- cation. Since the objective function of the model for an unstrained semi-supervised vector machine is not smooth, many fast opti- mization algorithms cannot be applied to solve the model. In order to overcome the difficulty of dealing with non-smooth objective functions, new methods that can solve the semi-supervised vector machine with desired classification accuracy are in great demand. A quintic spline function with three-times differentiability at the ori- gin is constructed by a general three-moment method, which can be used to approximate the symmetric hinge loss function. The approximate accuracy of the quintic spiine function is estimated. Moreover, a quintic spline smooth semi-support vector machine is obtained and the convergence accuracy of the smooth model to the non-smooth one is analyzed. Three experiments are performed to test the efficiency of the model. The experimental results show that the new model outperforms other smooth models, in terms of classification performance. Furthermore, the new model is not sensitive to the increasing number of the labeled samples, which means that the new model is more efficient.
基金Project(U1709211) supported by NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization,ChinaProject(ICT2021A15) supported by the State Key Laboratory of Industrial Control Technology,Zhejiang University,ChinaProject(TPL2019C03) supported by Open Fund of Science and Technology on Thermal Energy and Power Laboratory,China。
文摘Fault degradation prognostic, which estimates the time before a failure occurs and process breakdowns, has been recognized as a key component in maintenance strategies nowadays. Fault degradation processes are, in general,slowly varying and can be modeled by autoregressive models. However, industrial processes always show typical nonstationary nature, which may bring two challenges: how to capture fault degradation information and how to model nonstationary processes. To address the critical issues, a novel fault degradation modeling and online fault prognostic strategy is developed in this paper. First, a fault degradation-oriented slow feature analysis(FDSFA) algorithm is proposed to extract fault degradation directions along which candidate fault degradation features are extracted. The trend ability assessment is then applied to select major fault degradation features. Second, a key fault degradation factor(KFDF) is calculated to characterize the fault degradation tendency by combining major fault degradation features and their stability weighting factors. After that, a time-varying regression model with temporal smoothness regularization is established considering nonstationary characteristics. On the basis of updating strategy, an online fault prognostic model is further developed by analyzing and modeling the prediction errors. The performance of the proposed method is illustrated with a real industrial process.
基金funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 107.02-2019.330。
文摘The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element(MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index(k) and maximum porosity distributions(U) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail.
基金supported by the Aeronautical Science Foundation of China(20175752045)。
文摘A tilt-rotor aircraft has three flight modes: helicopter mode, airplane mode and conversion mode. Unlike the traditional aircraft, the tilt-rotor aircraft, which combines the characteristics of helicopters and fixed-wing aircraft, is a complex multi-body system with the violent variation of the aerodynamic parameters. For these characteristics, a new smooth switching control scheme is provided for the tilt-rotor aircraft. First, the reference commands for airspeed and nacelle angles are calculated by analyzing the conversion corridor and the conversion path. Subsequently, based on the finite-time switching theorem, an average dwell time condition is designed to guarantee the stability in the switching process. Besides, considering the state vibrations and bumps may appear in switching points, the fuzzy weighted logic is employed to improve the system transient performance. For disturbance rejection, three extended state observers are designed separately to estimate the disturbances in the switched systems. Compared with the traditional auto disturbance rejection control and proportion integration differentiation control, this method overcomes the conservatism of wasting the whole model information. The control performances of robustness and smoothness are verified with simulation, which shows that the new smooth switching control scheme is more targeted and superior than the traditional design method.
基金Project (60234030) supported by the National Natural Science Foundation of China
文摘An Approximate Voronoi Boundary Network is constructed as the environmental model by way of enlar-ging the obstacle raster. The connectivity of the path network under complex environment is ensured through build-ing the second order Approximate Voronoi Boundary Network after adding virtual obstacles at joint-close grids. Thismethod embodies the network structure of the free area of environment with less nodes, so the complexity of pathplanning problem is reduced largely. An optimized path for mobile robot under complex environment is obtainedthrough the Genetic Algorithm based on the elitist rule and re-optimized by using the path-tightening method. Sincethe elitist one has the only authority of crossover, the management of one group becomes simple, which makes forobtaining the optimized path quickly. The Approximate Voronoi Boundary Network has a good tolerance to the im-precise a priori information and the noises of sensors under complex environment. Especially it is robust in dealingwith the local or partial changes, so a small quantity of dynamic obstacles is difficult to alter the overall character ofits connectivity, which means that it can also be adopted in dynamic environment by fusing the local path planning.
基金supported by the Fundamental Research Funds for University of Science and Technology Beijing(FRF-BR-12-021)
文摘In order to handle the semi-supervised problem quickly and efficiently in the twin support vector machine (TWSVM) field, a semi-supervised twin support vector machine (S2TSVM) is proposed by adding the original unlabeled samples. In S2TSVM, the addition of unlabeled samples can easily cause the classification hyper plane to deviate from the sample points. Then a centerdistance principle is proposed to pre-classify unlabeled samples, and a pre-classified S2TSVM (PS2TSVM) is proposed. Compared with S2TSVM, PS2TSVM not only improves the problem of the samples deviating from the classification hyper plane, but also improves the training speed. Then PS2TSVM is smoothed. After smoothing the model, the pre-classified smooth S2TSVM (PS3TSVM) is obtained, and its convergence is deduced. Finally, nine datasets are selected in the UCI machine learning database for comparison with other types of semi-supervised models. The experimental results show that the proposed PS3TSVM model has better classification results.
文摘Aim This study sought to investigate the effect of chronic nicotine exposure on vascular function and to identify the underlying mechanisms. Methods Isolated organ bath studies were performed to examine the effects of chronic nicotine exposure on vascular reactivity of the aorta in Sprague-Dawley rats. We used various analogues and blockers of the cGMP-dependent protein kinase (PKG) pathway as well as molecular techniques to identify the un- derlying mechanisms. Results Chronic nicotine exposure reduced periaortic fat and specifically enhanced smooth muscle relaxation, although aortic adventitial fat and endothelium function were not affected. The soluble guanylyl cyclase inhibitor ODQ or PKG inhibitor Rp-8-Br-PET-cGMP abolished the difference in relaxation between the sa- line and nicotine group, and the cGMP analogue 8-Br-cGMP mimicked the difference in relaxation. PKG protein expression and activity were not altered after nicotine treatment. Conclusion Chronic nicotine exposure enhances vascular smooth muscle relaxation through a cGMP-dependent PKG pathway. Our findings provide novel insights in- to nicotine pharmacology.
文摘Background and Aim Vascular smooth muscle cell (SMC) phenotype change is a hallmark of vascu-lar remodeling, which can be regulated via MicroRNAs (miRNAs)-dependent mechanism. We recently identified Asymmetric dimethylarginine (ADMA) positively correlates to vascular remodeling-based diseases. Here, we hy-pothesized that ADMA induces SMC phenotypic change via a miRNA-dependent mechanism. Methods and Results Microarray analysis enabled the identification of 7 deregulated microRNAs in ADMA-treated human aortic artery smooth muscle cells (hASMCs). miR-182 was validated by real-time-PCR. Isobaric tags for relative and absolute quantitation (iTRAQ) based analysis of the hASMC proteome revealed that transfection of an miR-182 inhibitor sig- nificantly increased myeloid-associated differentiation marker (MYADM), which was verified using Western blot and reporter activity quantization with the MYADM 3'-UTR dual-luciferase reporter system, miR-182 knockdown further repressed Sprouty2 and enhanced MYADM, leading to ERICZMAP kinase-dependent and MYADM-depend- ent hASMC phenotypic change including proliferation, migration and differentiation marker gene expression change. In vivo, adeno-miR-182 markedly suppressed carotid neointimal formation by using balloon-injured rat carotid artery model, specifically via decreased MYADM expression. Atherosclerotic lesions from patients with high ADMA plas- ma levels exhibited decreased miR-182 expression levels and elevated MYADM expression levels. In patients with coronary heart disease (n- 164), the miR-182 expression level in plasma was negatively correlated with the plas- ma ADMA levels. Conclusions miR-182 is a novel SMC phenotypic modulator by targeting MYADM and can be a potential therapeutic target combating vascular remodeling-associated diseases. Reduced plasma miR-182 levels might be a new predictor of high vascular remodeling risk especially in patient with coronary heart disease.
基金supported by grants from the National Natural Science Foundation of China( 11572199 and 11625209)
文摘Objective The apoptosis of vascular smooth muscle cells(VSMCs)influenced by abnormal cyclic stretch is crucial for vascular remodeling during hypertension.We explored that the causes of mechano-responsive lamin A/C changingin aonormai cyclic stretcn and its roles in VSMC apoptosis.Methods and results Our previous vascular proteomics study revealed that LaminA/C is mechano-sensitive molecule.When VSMCs are subjected to cyclic stretch,the expression of LaminA/C is significantly changed which participates dysfunctions of VSMCs during hypertension.However,the molecular mechanism involved in regulation of LaminA/C expression and the role of LaminA/C in the VSMC apoptosis during cyclic stretch application are still unclear.In the present study,VSMCs were subjected to different amplitudes of cyclic steetch in vitro:5%cyclic stretch(physiological strain)or 15%cyclic stretch(pathological strain).The expression of 2 different selective cleavage isomers of LaminA/C,i.e.LaminA and LaminC,and the apoptosis of VSMCs were detected.The results showed that compared with 5%group,15%cyclic stretch significantly decreased the expression of LaminA and LaminC,and promoted the apoptosis of VSMCs.Using specific small interfering RNA(siRNA)transfection which targets on LMNA the encoding gene of LaminA/C,the expression of LaminA and LaminC in VSMCs was significantly decreased,and the apoptosis was significantly increased.In order to study the molecular mechanism involved in cyclic stretch regulating the expression of LaminA/C,we focused on the microRNA(miR).Bioinformatics analysis showed that the 3’untranslated region(3’UTR)of LMNA has two potential binding sites to miR-124-3p.Double luciferase reported system revealed that both sites have binding abilities to miR-124-3p.Under static condition,miR-124-3p inhibitor significantly up-regulated the expression levels of LaminA and LaminC,while the miR-124-3p mimics significantly down-regulated them.RT-PCR results showed that 15%cyclic stretch significantly up-regulated the expression of miR-124-3p compared with 5%cyclic stretch.Furthermore,in order to study the role of changeed LaminA/C in VSMC apoptosis,LMNA-specific siRNA was transfected to repress the expression of LaminA/C in VSMCs,and Protein/DNA microarray was used to detecte the activity of transcription factors.The transcription factors whose activity were changed significantly(increase or decrease more than 2 times)were analyzed by cluster analysis and ingenurity pathway analysis(IPA).Six transcription factors associated with apoptosis were screened,in which TP53 was activated by the specific siRNA transfection and the other 5 were inavtived,including TP53,CREB1,MYC,STAT1/5/6 and JUN.Using abdominal aorta coarctation hypertensive model,the change of miR-124-3p in VSMCs was explored in vivo.A marked increase of miR-124-3p in thoracic aorta was revealed compared with the sham-operated controls,and in situ FISH revealed that this increase was mainly in the VSMCs.Conclusions The present study suggest that abnormally increased cyclic stretch(15%)up-regulates the expression of miR-124-3p in VSMCs,which subsequently targets on the 3’UTR of LMNA and decreases the expression of nuclear envelope protein LaminA/C;the repressed LaminA/C may play an important role in the apoptosis of VSMCs by regulating the activity of virious transcription factors,such as TP53,CREB1,MYC,STAT1/5/6 and JUN.The present study may provide a new insight into understanding the molecular mechanisms of vascular remodeling.
文摘Aim Angiotensin II (AngII) induces vascular smooth muscle cell (VSMC) migration and growth, which is responsible for vascular remodeling during some cardiovascular diseases. It has been demonstrated to activate a C1 current, but the underlying mechanism is not clear. Methods Whole-cell patch clamp, co-immunoprecipitation (co-IP), site-specific mutagenesis, angiotensinII-infusion hypertensive mice model were used. Results In VSMCs, AngII could induce a C1C-3-dependent C1- current that was abolished in C1C-3 null mice. The activation mechanism of this AngII-induced C1- current was ascribed to the interaction between C1C-3 and Rho-kinase 2 (ROCIL2), as re- vealed by N-terminal or C-terminal truncation of C1C-3, ROCIC2 siRNA and Co-IP experiments. Then we searched for and identified the phosphorylation site of C1C-3 at threonine 532 is critical for AngII-induced C1- current and VSMC migration through ROCK. The C1C-3 T532D mutant (mutation of threonine 532 to aspartate), mimicking the phos- phorylation state of C1C-3, significantly potentiated AngII-induced C1- current and VSMC migration; while C1C-3 T532A (mutation of threonine 532 to alanine) had the opposite effects. Furthermore, we found a remarkably de- creased AngII-induced VSMC migration in C1C-3 null mice that is insensitive to Y27632, an inhibitor of ROCIL2. In addition, AngII-induced cerebrovascular remodeling was ameliorated in C1C-3 null mice, possibly by ROCIL2 path- way. Conclusions C1C-3 protein phosphorylation at threonine 532 by ROCIL2 is required for AngII-induced C1- cur- rent and VSMC migration that are involved in AngII-induced hypertensive vascular remodeling.
基金This work was supported bv a granl-in-aid awarded by the Medical Re-search Council of Canadaa Career Investigator Awand(CY Kwan)from the Heart and Stroke Foun-dation of Ontario.
文摘Norepinephrine(NE)endogenously released following electrical field stimulation(prazosin and TTX sensitive responses),produced a biphasic contraction of the rat vas deferens(RVD).The initial transient contraction was decreased by 30μmol/L ryanodine andμmol/L nifedipine while the secondary component was abolished by 2μmol/L nifedipine but increased by 30μmol/L ryanodine.Exogenously added NE produced biphasic contractions of the RVD.These contractions were inhibited by 2μmol/L nifedipine.Ryanodine(30μmol/L)decreased both phases by about 50%.We conclude that ryanodine binding sites reside in RVD endoplasmic reticulum(ER).There was a lack of uniformity in the effect of ryanodine against different phases of alpha-adrenergic stimulation may be indicative of two modes of stimulation-contraction coupling process related to this stimulation.