In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technolog...In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technology and BIM(Building Information Modeling)model was discussed.Focused on the efficient acquisition of building geometric information using the fast-developing 3D point cloud technology,an improved deep learning-based 3D point cloud recognition method was proposed.The method optimised the network structure based on RandLA-Net to adapt to the large-scale point cloud processing requirements,while the semantic and instance features of the point cloud were integrated to significantly improve the recognition accuracy and provide a precise basis for BIM model remodeling.In addition,a visual BIM model generation system was developed,which systematically transformed the point cloud recognition results into BIM component parameters,automatically constructed BIM models,and promoted the open sharing and secondary development of models.The research results not only effectively promote the automation process of converting 3D point cloud data to refined BIM models,but also provide important technical support for promoting building informatisation and accelerating the construction of smart cities,showing a wide range of application potential and practical value.展开更多
According to the mining method for Dongguashan Copper Mine and Tongkeng Mine in China, and with the help of the cavity monitoring system(CMS) and mining software Surpac, the 3D cavity models were established exactly...According to the mining method for Dongguashan Copper Mine and Tongkeng Mine in China, and with the help of the cavity monitoring system(CMS) and mining software Surpac, the 3D cavity models were established exactly. A series of correlative techniques for calculating stope over-excavation and under-excavation, stope dilution and ore loss rates, and the blasting design of the pillar with complicated irregular boundaries were developed. These techniques were applied in Dongguashan Copper Mine and Tongkeng Mine successfully. Using these techniques, the dilution rates of stopes 52-2^#, 52-6^#, 52-8^#and 52-10^# of Dongguashan Copper Mine are calculated to be 2.12%, 8.46%, 12-67% and 10.68%, respectively, and the ore loss rates of stopes 52-6^# and 5-8^# are 4.41% and 3.70%, severally. Furthermore, according to the design accomplished by the technique for a pillar of Tongkeng Mine with irregular boundary, the volume, total length of boreholes and the dynamite quantity of the pillar are computed to be 1.2 ×10^4 m^3, 2.98 km and 10.97 t, correspondingly.展开更多
One-dimensional blast response of continuous-density graded cellular rods was investigated theoretically and numerically. Analytical model based on the rigid-plastic hardening(R-PH) model was used to predict the blast...One-dimensional blast response of continuous-density graded cellular rods was investigated theoretically and numerically. Analytical model based on the rigid-plastic hardening(R-PH) model was used to predict the blast response of density-graded cellular rods. Finite element(FE) analysis was performed using a new model based on the 3 D Voronoi technique. The FE results have a good agreement with the analytical predictions. The blast response and energy absorption of cellular rods with the same mass but different density distributions were examined under different blast loading. As a blast resistance structure, cellular materials with high energy absorption and low impulse transmit is attractive. However, high energy absorption and low impulse transmit cannot be achieved at the same time by changing the density distribution. The energy absorption capacity increases with the initial blast pressure and characteristic time of the exponentially decaying blast loading. By contract, when the blast loading exceeds the resistance capacity of cellular material, the transmitted stress will be enhanced which is detrimental to the structure being protected.展开更多
A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static...A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static method. Considering the randomness of rock mass parameters and loads, a three-dimensional (3D) stochastic collapse model was established. Reliability analysis of seismic stability of tunnel faces was presented via the kinematical approach and the response surface method. The results show that, the reliability of tunnel faces is significantly affected by the supporting pressure, geological strength index, uniaxial compressive strength, rock bulk density and seismic forces. It is worth noting that, if the effect of seismic force was not considered, the stability of tunnel faces would be obviously overestimated. However, the correlation between horizontal and vertical seismic forces can be ignored under the condition of low calculation accuracy.展开更多
The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luan...The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luanchuan,the case study area,southwestern Henan Province,is an important molybdenum-tungsten -lead-zinc polymetallic belt in China.展开更多
Recently,underground space evaluation has become fundamental for a city’s long term sustainable development planning.This paper,based on the 3D-GIS tools,adopts"multi-factors comprehensive evaluation"models...Recently,underground space evaluation has become fundamental for a city’s long term sustainable development planning.This paper,based on the 3D-GIS tools,adopts"multi-factors comprehensive evaluation"models to establish a practicable underground space resources quantitative evaluation system.It sets up展开更多
In this paper,3D-GIS reconstruction and interpolation approach,additional virtual borehole technology and BP network technology are used to explore the concealed ore body.The virtual borehole has same function as real...In this paper,3D-GIS reconstruction and interpolation approach,additional virtual borehole technology and BP network technology are used to explore the concealed ore body.The virtual borehole has same function as reality borehole due to the multi-information check and validation in展开更多
文摘In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technology and BIM(Building Information Modeling)model was discussed.Focused on the efficient acquisition of building geometric information using the fast-developing 3D point cloud technology,an improved deep learning-based 3D point cloud recognition method was proposed.The method optimised the network structure based on RandLA-Net to adapt to the large-scale point cloud processing requirements,while the semantic and instance features of the point cloud were integrated to significantly improve the recognition accuracy and provide a precise basis for BIM model remodeling.In addition,a visual BIM model generation system was developed,which systematically transformed the point cloud recognition results into BIM component parameters,automatically constructed BIM models,and promoted the open sharing and secondary development of models.The research results not only effectively promote the automation process of converting 3D point cloud data to refined BIM models,but also provide important technical support for promoting building informatisation and accelerating the construction of smart cities,showing a wide range of application potential and practical value.
基金Projects(2007BAK22B04, 2006BAB02B05) supported by the National 11th Five-Year Science and Technology Supporting Plan of ChinaProject(50490274) supported by the National Natural Science Foundation of China
文摘According to the mining method for Dongguashan Copper Mine and Tongkeng Mine in China, and with the help of the cavity monitoring system(CMS) and mining software Surpac, the 3D cavity models were established exactly. A series of correlative techniques for calculating stope over-excavation and under-excavation, stope dilution and ore loss rates, and the blasting design of the pillar with complicated irregular boundaries were developed. These techniques were applied in Dongguashan Copper Mine and Tongkeng Mine successfully. Using these techniques, the dilution rates of stopes 52-2^#, 52-6^#, 52-8^#and 52-10^# of Dongguashan Copper Mine are calculated to be 2.12%, 8.46%, 12-67% and 10.68%, respectively, and the ore loss rates of stopes 52-6^# and 5-8^# are 4.41% and 3.70%, severally. Furthermore, according to the design accomplished by the technique for a pillar of Tongkeng Mine with irregular boundary, the volume, total length of boreholes and the dynamite quantity of the pillar are computed to be 1.2 ×10^4 m^3, 2.98 km and 10.97 t, correspondingly.
文摘One-dimensional blast response of continuous-density graded cellular rods was investigated theoretically and numerically. Analytical model based on the rigid-plastic hardening(R-PH) model was used to predict the blast response of density-graded cellular rods. Finite element(FE) analysis was performed using a new model based on the 3 D Voronoi technique. The FE results have a good agreement with the analytical predictions. The blast response and energy absorption of cellular rods with the same mass but different density distributions were examined under different blast loading. As a blast resistance structure, cellular materials with high energy absorption and low impulse transmit is attractive. However, high energy absorption and low impulse transmit cannot be achieved at the same time by changing the density distribution. The energy absorption capacity increases with the initial blast pressure and characteristic time of the exponentially decaying blast loading. By contract, when the blast loading exceeds the resistance capacity of cellular material, the transmitted stress will be enhanced which is detrimental to the structure being protected.
基金Projects(51804113,51434006,51874130)supported by the National Natural Science Foundation of ChinaProject(E51768)supported by the Doctoral Initiation Foundation of Hunan University of Science and Technology,China+1 种基金Project(E61610)supported by the Postdoctoral Research Foundation of Hunan University of Science and Technology,ChinaProject(E21734)supported by the Open Foundation of Work Safety Key Lab on Prevention and Control of Gas and Roof Disasters for Southern Coal Mines,China
文摘A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static method. Considering the randomness of rock mass parameters and loads, a three-dimensional (3D) stochastic collapse model was established. Reliability analysis of seismic stability of tunnel faces was presented via the kinematical approach and the response surface method. The results show that, the reliability of tunnel faces is significantly affected by the supporting pressure, geological strength index, uniaxial compressive strength, rock bulk density and seismic forces. It is worth noting that, if the effect of seismic force was not considered, the stability of tunnel faces would be obviously overestimated. However, the correlation between horizontal and vertical seismic forces can be ignored under the condition of low calculation accuracy.
文摘The development of 3D geological models involves the integration of large amounts of geological data,as well as additional accessible proprietary lithological, structural,geochemical,geophysical,and borehole data.Luanchuan,the case study area,southwestern Henan Province,is an important molybdenum-tungsten -lead-zinc polymetallic belt in China.
文摘Recently,underground space evaluation has become fundamental for a city’s long term sustainable development planning.This paper,based on the 3D-GIS tools,adopts"multi-factors comprehensive evaluation"models to establish a practicable underground space resources quantitative evaluation system.It sets up
文摘In this paper,3D-GIS reconstruction and interpolation approach,additional virtual borehole technology and BP network technology are used to explore the concealed ore body.The virtual borehole has same function as reality borehole due to the multi-information check and validation in