期刊文献+
共找到259篇文章
< 1 2 13 >
每页显示 20 50 100
基于聚类集成的地下空间地质环境质量三维评价 被引量:1
1
作者 熊芸莹 李晓晖 +3 位作者 袁峰 卢志堂 吴少元 窦帆帆 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期78-84,91,共8页
城市地下空间开发利用是解决城市土地资源紧缺的重要手段,地下空间地质环境质量评价是地下空间合理安全利用和降低开发风险的前提和保障。为了降低评价过程中的主观性和评价结果中多种评价指标交叉交融的不确定性,文章基于三维地质模型... 城市地下空间开发利用是解决城市土地资源紧缺的重要手段,地下空间地质环境质量评价是地下空间合理安全利用和降低开发风险的前提和保障。为了降低评价过程中的主观性和评价结果中多种评价指标交叉交融的不确定性,文章基于三维地质模型,采用多种聚类模型的聚类集成算法对地下空间地质环境质量进行评价。利用K-means、高斯混合模型、自组织神经网络等聚类模型计算结果,结合重标记法的聚类集成算法实现地质环境质量评价。以厦门市某区为例,基于三维评价指标信息,利用上述分析方法进行评价,并与层次分析法结合多级指数叠加法评价结果进行对比分析。结果表明,基于聚类集成的评价方法能够有效应用于地下空间地质环境质量三维分类及评价研究,相关评价结果可以更客观地为地下空间的安全合理开发提供支持和保障,更好地服务于城市地下空间的建设规划和可持续发展。 展开更多
关键词 地下空间 自组织神经网络 K-MEANS算法 高斯混合模型 集成 三维
在线阅读 下载PDF
基于K-means聚类和特征空间增强的噪声标签深度学习算法 被引量:2
2
作者 吕佳 邱小龙 《智能系统学报》 CSCD 北大核心 2024年第2期267-277,共11页
深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样... 深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样本集赋予伪标签。然而,错误的伪标签以及训练样本数量不足的问题仍然限制着噪声标签学习算法性能的提升。为解决上述问题,提出基于K-means聚类和特征空间增强的噪声标签深度学习算法。首先,该算法利用K-means聚类算法对干净样本集进行标签聚类,并根据噪声样本集与聚类中心的距离大小筛选出难以分类的噪声样本,以提高训练样本的质量;其次,使用mixup算法扩充干净样本集和噪声样本集,以增加训练样本的数量;最后,采用特征空间增强算法抑制mixup算法新生成的噪声样本,从而提高网络的分类准确率。并在CIFAR10、CIFAR100、MNIST和ANIMAL-10共4个数据集上试验验证了该算法的有效性。 展开更多
关键词 噪声标签学习 深度学习 半监督学习 机器学习 神经网络 K-MEANS 特征空间增强 mixup算法
在线阅读 下载PDF
基于空间插值的不规则海洋地质样品测试分析数据聚类算法研究 被引量:1
3
作者 邵长高 严镔 陈秋 《热带海洋学报》 CAS CSCD 北大核心 2024年第2期166-172,共7页
海洋地质调查中获取大量海洋沉积物柱状样样品测试分析数据,样品测试分析目的不同导致柱状样数据采样深度不同,由此造成地质取样数据在三维空间上呈现不规则散点状分布。传统聚类算法无法在三维空间上对此类不规则散点数据进行聚类分析... 海洋地质调查中获取大量海洋沉积物柱状样样品测试分析数据,样品测试分析目的不同导致柱状样数据采样深度不同,由此造成地质取样数据在三维空间上呈现不规则散点状分布。传统聚类算法无法在三维空间上对此类不规则散点数据进行聚类分析。对此,文章设计了一种基于空间插值的不规则地质样品测试分析数据聚类算法,有效地将三维样品测试分析散点数据降为二维数据后进行聚类分析,本算法较好地解决了地质体中试验测试数据的不均衡性问题,为海洋地质大数据分析提供了基础技术方法。 展开更多
关键词 地质取样 实验测试 算法 空间插值 三维
在线阅读 下载PDF
非负拉格朗日松弛优化的子空间聚类算法
4
作者 朱东霞 贾洪杰 黄龙霞 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第1期100-113,共14页
传统的子空间聚类和谱聚类中普遍使用谱松弛方法聚类,需要先计算拉普拉斯矩阵的特征向量。特征向量中包含负数,根据元素的正负可以直接得到二类聚类的结果。对于多类聚类问题,需要递归地进行二划分,或在特征向量空间中使用k-means算法聚... 传统的子空间聚类和谱聚类中普遍使用谱松弛方法聚类,需要先计算拉普拉斯矩阵的特征向量。特征向量中包含负数,根据元素的正负可以直接得到二类聚类的结果。对于多类聚类问题,需要递归地进行二划分,或在特征向量空间中使用k-means算法聚类,分配类簇标签是间接的,这种后处理的聚类方式会增加聚类结果的不稳定性。针对谱松弛的问题,提出了一种非负拉格朗日松弛优化的子空间聚类算法,在目标函数中集成了自表示学习和秩约束。通过非负拉格朗日松弛来求解相似性矩阵和隶属矩阵,并保持隶属矩阵的非负性。在这种情况下,原来的隶属矩阵就变成了类簇的后验概率,当算法收敛时,只需将数据点分配给具有最大后验概率的类簇,即可得到聚类结果。与已有的子空间聚类和谱聚类方法相比,所提出的算法设计了新的优化规则,可以实现类簇标签的直接分配,不需要额外的聚类步骤。最后,给出了算法的收敛性证明。在5个基准聚类数据集上的大量实验表明,所提算法的聚类性能优于近几年来的子空间聚类方法。 展开更多
关键词 算法 自表示 优化 非负拉格朗日松弛 空间
在线阅读 下载PDF
城市休闲产业聚类模式APM算法模型开发与校验 被引量:2
5
作者 刘逸 吴雪涵 许汀汀 《旅游学刊》 CSSCI 北大核心 2024年第4期40-52,共13页
城市休闲相关产业的高质量发展对当前我国城市消费升级以及人居环境质量提升具有重要现实意义。但是,现有研究未能精准地捕捉海量广域分布的城市休闲产业的基本空间分布规律与结构,而已有的空间聚类算法较多适用于城市用地分析,未能很... 城市休闲相关产业的高质量发展对当前我国城市消费升级以及人居环境质量提升具有重要现实意义。但是,现有研究未能精准地捕捉海量广域分布的城市休闲产业的基本空间分布规律与结构,而已有的空间聚类算法较多适用于城市用地分析,未能很好地适用于离散分布的城市休闲产业研究。为此,文章基于空间兴趣点数据,开发距离通达值及空间集群中心点等算法,构建城市休闲旅游产业聚类模式空间算法模型(APM)。在以广州为例的研究中,APM模型捕捉出3170个以500 m步行生活圈为范围的城市休闲产业集群,校验了APM模型的科学性与应用价值。整体上,APM算法可以较好地捕捉城市休闲业态集群的空间结构,清晰识别城市休闲产业空间冷、热点分布的基本结构,由其捕捉行程的聚类边界与实际道路和建筑走向、水系边界、区域范围等重合度高,聚类集群符合实际情况,具备可信度与有效性。该研究是休闲产业集聚机制研究的一次方法创新,在算法精度、实际应用、可视化效率上均做出了创新性推进。与Fishnet方法相比,可以更科学精准地识别城市内部多个休闲消费商圈的边界,实现了高效率的城市休闲产业集群捕捉;与同位模型相比,可以呈现多类别的城市休闲业态结构,突破了现有研究只能捕捉两类业态组团的局限。 展开更多
关键词 城市旅游休闲 产业集模式 空间数据挖掘 算法 POI 广州市
在线阅读 下载PDF
空间聚类算法中的K值优化问题研究 被引量:39
6
作者 李永森 杨善林 +2 位作者 马溪骏 胡笑旋 陈增明 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第3期573-576,共4页
在典型的空间聚类算法K-平均法和K-中心法中,K一般为用户事先确定的值,然而,实际中K值很难被精确地确定,往往表现为一个模糊的取值区间。在此提出距离代价函数的概念,建立了相应的数学模型并设计了一个新的K值优化算法,对空间聚类K值优... 在典型的空间聚类算法K-平均法和K-中心法中,K一般为用户事先确定的值,然而,实际中K值很难被精确地确定,往往表现为一个模糊的取值区间。在此提出距离代价函数的概念,建立了相应的数学模型并设计了一个新的K值优化算法,对空间聚类K值优化问题进行了初步的研究。 展开更多
关键词 空间 尽平均算法 距离代价函数 K值优化
在线阅读 下载PDF
一种基于密度的空间数据流在线聚类算法 被引量:28
7
作者 于彦伟 王沁 +1 位作者 邝俊 何杰 《自动化学报》 EI CSCD 北大核心 2012年第6期1051-1059,共9页
为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点... 为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点及其满足核心点条件的邻域数据做局部聚类更新,降低聚类更新的时间复杂度,实现对空间数据流的在线聚类.OLDStream算法具有快速处理大规模空间数据流、实时获取全局任意形状的聚类簇结果、对数据流的输入顺序不敏感、并能发现孤立点数据等优势.在真实数据和合成数据上的综合实验验证了算法的聚类效果、高效率性和较高的可伸缩性,同时实验结果的统计分析显示仅有4%的空间点消耗最坏运行时间,对每个空间点的平均聚类时间约为0.033ms. 展开更多
关键词 空间数据挖掘 数据流 基于密度的 在线算法 噪声处理
在线阅读 下载PDF
高维数据流子空间聚类发现及维护算法 被引量:17
8
作者 周晓云 孙志挥 +1 位作者 张柏礼 杨宜东 《计算机研究与发展》 EI CSCD 北大核心 2006年第5期834-840,共7页
近年来由于数据流应用的大量涌现,基于数据流模型的数据挖掘算法研究已成为重要的应用前沿课题.提出一种基于Hoeffding界的高维数据流的子空间聚类发现及维护算法——SHStream.算法将数据流分段(分段长度由Hoeffding界确定),在数据分段... 近年来由于数据流应用的大量涌现,基于数据流模型的数据挖掘算法研究已成为重要的应用前沿课题.提出一种基于Hoeffding界的高维数据流的子空间聚类发现及维护算法——SHStream.算法将数据流分段(分段长度由Hoeffding界确定),在数据分段上进行子空间聚类,通过迭代逐步得到满足聚类精度要求的聚类结果,同时针对数据流的动态性,算法对聚类结果进行调整和维护.算法可以有效地处理高维数据流和对任意形状分布数据的聚类问题.基于真实数据集与仿真数据集的实验表明,算法具有良好的适用性和有效性. 展开更多
关键词 数据流 算法 空间 Hoeffding界
在线阅读 下载PDF
一个用于空间聚类分析的遗传K-均值算法 被引量:19
9
作者 王家耀 张雪萍 周海燕 《计算机工程》 CAS CSCD 北大核心 2006年第3期188-190,共3页
空间数据挖掘是数据挖掘的一个新的分支,空间聚类分析是空间数据挖掘中的一个重要研究课题。本文在分析遗传算法及K–均值算法的优越性和不足的基础上,设计了一种遗传K-均值空间聚类分析算法,该算法兼顾了局部收敛和全局收敛性能。实验... 空间数据挖掘是数据挖掘的一个新的分支,空间聚类分析是空间数据挖掘中的一个重要研究课题。本文在分析遗传算法及K–均值算法的优越性和不足的基础上,设计了一种遗传K-均值空间聚类分析算法,该算法兼顾了局部收敛和全局收敛性能。实验表明,其结果优于传统K-均值聚类方法及单纯的遗传算法聚类。 展开更多
关键词 空间数据挖掘 空间 遗传算法 K-均值算法 遗传K-均值算法
在线阅读 下载PDF
烟花算法优化的软子空间MR图像聚类算法 被引量:12
10
作者 范虹 侯存存 +1 位作者 朱艳春 姚若侠 《软件学报》 EI CSCD 北大核心 2017年第11期3080-3093,共14页
现有的软子空间聚类算法在分割MR图像时易受随机噪声的影响,而且算法因依赖于初始聚类中心的选择而容易陷入局部最优,导致分割效果不理想.针对这一问题,提出一种基于烟花算法的软子空间MR图像聚类算法.算法首先设计一个结合界约束与噪... 现有的软子空间聚类算法在分割MR图像时易受随机噪声的影响,而且算法因依赖于初始聚类中心的选择而容易陷入局部最优,导致分割效果不理想.针对这一问题,提出一种基于烟花算法的软子空间MR图像聚类算法.算法首先设计一个结合界约束与噪声聚类的目标函数,弥补现有算法对噪声数据敏感的缺陷,并提出一种隶属度计算方法,快速、准确地寻找簇类所在子空间;然后,在聚类过程中引入自适应烟花算法,有效地平衡局部与全局搜索,弥补现有算法容易陷入局部最优的不足.EWKM,FWKM,FSC,LAC算法在UCI数据集、人工合成图像、Berkeley图像数据集以及临床乳腺MR图像、脑部MR图像上的聚类结果表明,所提出的算法不仅在UCI数据集上能够取得较好的结果,而且对图像聚类也具有较好的抗噪性能,尤其是对MR图像的聚类具有较高的精度和鲁棒性,能够较为有效地实现MR图像的分割. 展开更多
关键词 烟花算法 软子空间 噪声 MR图像 图像分割
在线阅读 下载PDF
基于空间特征谱聚类算法的含噪苹果图像优化分割 被引量:4
11
作者 顾玉宛 史国栋 +2 位作者 刘晓洋 赵德杰 赵德安 《农业工程学报》 EI CAS CSCD 北大核心 2016年第16期159-167,共9页
为了减少噪声对苹果采摘机器人的目标识别所带来的影响,对含噪苹果图像的分割方法进行了研究。该研究设计一种针对噪声具有鲁棒性的苹果图像分割方法,首先计算苹果图像的三维空间特征点的紧致性函数,用以构造邻近点的相似矩阵实现苹果... 为了减少噪声对苹果采摘机器人的目标识别所带来的影响,对含噪苹果图像的分割方法进行了研究。该研究设计一种针对噪声具有鲁棒性的苹果图像分割方法,首先计算苹果图像的三维空间特征点的紧致性函数,用以构造邻近点的相似矩阵实现苹果图像的去噪效果;再利用离群点矩阵拆分并由其他剩余列向量线性表示,对相似矩阵进行离群点调优实现聚类优化,进而提出基于空间特征的谱聚类含噪苹果图像分割的优化算法,旨在提高分割算法的效率和识别准确率。通过对两幅苹果图像添加不同程度的高斯和椒盐噪声(方差分别为0.01、0.05和0.1的高斯噪声和概率为0.01、0.05和0.1的椒盐噪声)进行试验,分别求出谱聚类方法、基于空间特征的谱聚类方法和该文优化方法的苹果目标图像的分割图,并计算三类方法的分割准确率。该文优化方法对于单个苹果受不同噪声影响下的分割准确率均在99%以上,对于重叠苹果的分割准确率均在98%以上,对于所选取的30幅苹果图在方差为0.05的高斯噪声和概率为0.01的椒盐噪声影响下的平均分割准确率为99.014%。结果表明:谱聚类方法受噪声的影响较大;基于空间特征的谱聚类方法的分割效果受噪声的影响较小,但在边界区域仍然有很多错分的像素;优化方法在边界区域的分割要优于基于空间特征的谱聚类方法;在设定的试验条件下,其分割结果准确率相对于基于空间特征的谱聚类方法和传统的谱聚类方法可分别提高5%~6%和9%~25%。在分割效率方面,该文优化方法的分割时间低于传统的谱聚类算法,且与基于空间特征谱聚类方法接近。研究结果为苹果采摘机器人的快速目标识别提供参考。 展开更多
关键词 图像分割 算法 水果 空间特征 优化
在线阅读 下载PDF
基于k最相似聚类的子空间聚类算法 被引量:8
12
作者 单世民 闫妍 张宪超 《计算机工程》 CAS CSCD 北大核心 2009年第14期4-6,共3页
子空间聚类是聚类研究领域的一个重要分支和研究热点,用于解决高维聚类分析面临的数据稀疏问题。提出一种基于k最相似聚类的子空间聚类算法。该算法使用一种聚类间相似度度量方法保留k最相似聚类,在不同子空间上采用不同局部密度阈值,通... 子空间聚类是聚类研究领域的一个重要分支和研究热点,用于解决高维聚类分析面临的数据稀疏问题。提出一种基于k最相似聚类的子空间聚类算法。该算法使用一种聚类间相似度度量方法保留k最相似聚类,在不同子空间上采用不同局部密度阈值,通过k最相似聚类确定子空间搜索方向。将处理的数据类型扩展到连续型和分类型,可以有效处理高维数据聚类问题。实验结果证明,与CLIQUE和SUBCLU相比,该算法具有更好的聚类效果。 展开更多
关键词 算法 空间 高维数据
在线阅读 下载PDF
一种基于空间邻接关系的k-means聚类改进算法 被引量:15
13
作者 王海起 王劲峰 《计算机工程》 CAS CSCD 北大核心 2006年第21期50-51,75,共3页
空间对象不仅具有非空间的属性特征,而且具有与空间位置、拓扑结构相关的空间特征。利用传统的聚类方法对空间对象进行聚类时,由于没有考虑空间关系,同一类的对象可能出现在空间不相邻的位置。基于空间邻接关系的k-means改进算法将相邻... 空间对象不仅具有非空间的属性特征,而且具有与空间位置、拓扑结构相关的空间特征。利用传统的聚类方法对空间对象进行聚类时,由于没有考虑空间关系,同一类的对象可能出现在空间不相邻的位置。基于空间邻接关系的k-means改进算法将相邻对象的空间邻接关系作为约束条件加以考虑,使聚类结果既反映了属性特征的相似程度,又反映了对象的空间相邻状态,从而可以揭示不同类别对象的空间分布格局,因此其比传统的k-means方法更适合于空间对象的聚类分析。 展开更多
关键词 空间对象 空间邻接关系 邻接矩阵 K-MEANS算法
在线阅读 下载PDF
大矢量空间聚类的遗传k-均值算法 被引量:6
14
作者 王磊 戚飞虎 《上海交通大学学报》 EI CAS CSCD 北大核心 1999年第9期1154-1156,共3页
基于遗传算法与k均值算法,提出了一种遗传k均值算法.该算法通过改进标准遗传操作和使用可变变异率,使其在大矢量空间聚类问题中表现良好的性能,克服了k均值聚类算法易于陷入局部最值和标准遗传交叉操作对聚类应用的不适应.
关键词 遗传算法 K-均值算法 矢量空间
在线阅读 下载PDF
基于GIS的空间聚类算法研究 被引量:3
15
作者 厍向阳 彭文祥 +1 位作者 薛惠锋 李继军 《计算机工程与应用》 CSCD 北大核心 2005年第29期24-26,31,共4页
面对目前的聚类方法的局限性和空间聚类的特殊性,从基于目标函数聚类的概念出发,以GIS的空间数据管理和空间分析为技术支持,探讨了空间样本间直接可达距离、间接可达距离和可达成本的计算方法。随机选择k个样本作为聚类中心点,以空间样... 面对目前的聚类方法的局限性和空间聚类的特殊性,从基于目标函数聚类的概念出发,以GIS的空间数据管理和空间分析为技术支持,探讨了空间样本间直接可达距离、间接可达距离和可达成本的计算方法。随机选择k个样本作为聚类中心点,以空间样本到各聚类中心点的可达距离为样本划分依据,以空间样本到其聚类中心点的可达成本的总和为聚类目标函数,引入遗传算法,提出一种基于GIS的空间聚类算法。最后,通过实例进行了算法测试。 展开更多
关键词 空间数据 算法 地理信息系统(GIS) 遗传算法
在线阅读 下载PDF
基于子空间聚类算法的时空轨迹聚类 被引量:9
16
作者 马林兵 李鹏 《地理与地理信息科学》 CSCD 北大核心 2014年第4期7-11,F0003,共6页
已有的时空轨迹聚类方法一般以整条轨迹作为聚类单元,聚类效果较低且不能识别轨迹局部特征;另一种轨迹聚类方法是以划分后轨迹段为聚类单元,算法效率较低且不能很好地支持多属性聚类。该文提出基于子空间聚类算法的时空轨迹聚类。首先... 已有的时空轨迹聚类方法一般以整条轨迹作为聚类单元,聚类效果较低且不能识别轨迹局部特征;另一种轨迹聚类方法是以划分后轨迹段为聚类单元,算法效率较低且不能很好地支持多属性聚类。该文提出基于子空间聚类算法的时空轨迹聚类。首先引入数据归约的思想,将轨迹进行离散化处理,再运用CLIQUE算法对离散化后的轨迹段进行聚类。实验结果表明,此轨迹聚类方法具有较高的伸缩性,能有效地处理多维轨迹数据并识别轨迹的局部聚类特征,能揭示时空轨迹在不同子空间的运动规律。 展开更多
关键词 轨迹 空间 CLIQUE算法
在线阅读 下载PDF
目标空间聚类的差分头脑风暴优化算法 被引量:7
17
作者 吴亚丽 付玉龙 +1 位作者 王鑫睿 刘庆 《控制理论与应用》 EI CAS CSCD 北大核心 2017年第12期1583-1593,共11页
作为一种新型的群体智能优化算法,头脑风暴优化(brain storm optimization,BSO)算法一经提出便引起了众多研究者的关注.本文在对原始头脑风暴算法的聚类操作和变异操作改进的基础上,提出了基于目标空间聚类的差分头脑风暴(difference br... 作为一种新型的群体智能优化算法,头脑风暴优化(brain storm optimization,BSO)算法一经提出便引起了众多研究者的关注.本文在对原始头脑风暴算法的聚类操作和变异操作改进的基础上,提出了基于目标空间聚类的差分头脑风暴(difference brain storm optimization based on clustering in objective space,DBSO–OS)算法.算法通过对目标空间的聚类替代对决策空间的聚类,减小了算法的运算复杂度;采用差分变异代替高斯变异来增加种群的多样性.多个测试函数的仿真结果表明,目标空间聚类的差分头脑风暴算法不仅提高了算法的寻优速度,而且提高了算法的寻优精度.文中进一步分析了参数对算法性能的影响,设计了最佳参数选择方案,并用于对实际热电联供经济调度问题的求解,验证了算法的实用性. 展开更多
关键词 头脑风暴算法 差分变异 目标空间
在线阅读 下载PDF
基于商空间粒度的覆盖聚类算法 被引量:3
18
作者 严莉莉 张燕平 胡必云 《计算机应用研究》 CSCD 北大核心 2008年第1期47-49,共3页
介绍了覆盖算法的基本思想,给出了商空间粒度的基本原理,提出了基于商空间粒度的覆盖聚类算法。通过实验验证了该算法的有效性和可行性,它适合处理大规模的数据样本。
关键词 覆盖算法 粒度 空间
在线阅读 下载PDF
基于结构树的高维数据流子空间自适应聚类算法 被引量:4
19
作者 肖红光 陈颖慧 巫小蓉 《小型微型计算机系统》 CSCD 北大核心 2016年第10期2206-2211,共6页
针对目前子空间聚类算法大多需要多次扫描数据流,且不能根据数据流的动态变化及时调整聚类结果的问题,提出一种基于结构树的数据流子空间自适应聚类算法.该算法通过对数据流的一次性扫描,利用改进相对熵找到区域的相关维,在对应相关维... 针对目前子空间聚类算法大多需要多次扫描数据流,且不能根据数据流的动态变化及时调整聚类结果的问题,提出一种基于结构树的数据流子空间自适应聚类算法.该算法通过对数据流的一次性扫描,利用改进相对熵找到区域的相关维,在对应相关维组成的子空间中进行网格聚类,确保了不同的簇发生在不同的子空间中,同时利用结构树保存区域划分信息,面对不同聚类请求结合回溯算法的思想及时高效地对子空间划分结果进行相应调整.通过在真实数据集和仿真数据集上的实验表明,本算法在同等甚至更小的时间代价的前提下,其聚类精度远远高于现有的子空间聚类算法,且对数据量和属性维度都具有良好的伸缩性. 展开更多
关键词 数据流 空间 结构树 自适应 相对熵值 回溯算法
在线阅读 下载PDF
基于模型的子空间聚类与时间段蚁群算法的合同生产批量调度方法 被引量:4
20
作者 王利 高宪文 +1 位作者 王伟 王琦 《自动化学报》 EI CSCD 北大核心 2014年第9期1991-1997,共7页
针对目前冷轧薄板厂生产流程复杂、大量的多品种小批量合同并线生产,导致难以制定生产计划的问题,本文提出了混合模型子空间聚类(Subspace clustering mixed model,SCMM)方法,以合同中待加工钢卷的宽度、冷轧机组的入口厚度、出口厚度... 针对目前冷轧薄板厂生产流程复杂、大量的多品种小批量合同并线生产,导致难以制定生产计划的问题,本文提出了混合模型子空间聚类(Subspace clustering mixed model,SCMM)方法,以合同中待加工钢卷的宽度、冷轧机组的入口厚度、出口厚度以及合同的交货期为约束,对待生产合同进行组批.依据冷轧厂实际生产过程,将冷轧机组视为核心节点,考虑准时交货、在制品库存和生产流向产能分配的要求,对组批后的生产合同建立全流程合同计划模型,并且利用提出的时间段蚁群算法(Time-section ant colony optimization,TSA),制定合同计划.利用生产过程的实际数据测试,本文的方法优于人工排产,可以满足制定冷轧薄板全流程生产计划的要求. 展开更多
关键词 冷轧 空间 蚁群算法 生产计划与调度
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部