This study investigates the effect of tool rotational speed(TRS)on particle distribution in nugget zone(NZ)through quantitative approach and its consequences on the mechanical property of friction stir welded joints o...This study investigates the effect of tool rotational speed(TRS)on particle distribution in nugget zone(NZ)through quantitative approach and its consequences on the mechanical property of friction stir welded joints of AA6092/17.5 SiCp-T6 composite.6 mm thick plates are welded at a constant tool tilt angle of 2°and tool traverse speed of 1 mm/s by varying the TRS at 1000 rpm,1500 rpm and 2000 rpm with a taper pin profiled tool.Microstructure analysis shows large quantity of uniformly shaped smaller size SiC particle with lower average particle area which are homogeneously distributed in the NZ.The fragmentation of bigger size particles has been observed because of abrading action of the hard tool and resulting shearing effect and severe stress generation due to the rotation of tool.The particles occupy maximum area in the matrix compared to that of the base material(BM)due to the redistribution of broken particles as an effect of TRS.The migration of particles towards the TMAZ-NZ transition zone has been also encountered at higher TRS(2000 rpm).The microhardness analysis depicts variation in average hardness from top to bottom of the NZ,minimum for 1500 rpm and maximum for 2000 rpm.The impact strength at 1000 rpm and 1500 rpm remains close to that of BM(21.6 J)while 2000 rpm shows the accountable reduction.The maximum joint efficiency has been achieved at 1500 rpm(84%)and minimum at 1000 rpm(68%)under tensile loading.Fractographic analysis shows mixed mode of failure for BM,1000 rpm and 1500 rpm,whereas 2000 rpm shows the brittle mode of failure.展开更多
Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flak...Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear.展开更多
基金Ministry of Human Resource,Government of India for providing necessary funding through scholarship to carry out the research activities。
文摘This study investigates the effect of tool rotational speed(TRS)on particle distribution in nugget zone(NZ)through quantitative approach and its consequences on the mechanical property of friction stir welded joints of AA6092/17.5 SiCp-T6 composite.6 mm thick plates are welded at a constant tool tilt angle of 2°and tool traverse speed of 1 mm/s by varying the TRS at 1000 rpm,1500 rpm and 2000 rpm with a taper pin profiled tool.Microstructure analysis shows large quantity of uniformly shaped smaller size SiC particle with lower average particle area which are homogeneously distributed in the NZ.The fragmentation of bigger size particles has been observed because of abrading action of the hard tool and resulting shearing effect and severe stress generation due to the rotation of tool.The particles occupy maximum area in the matrix compared to that of the base material(BM)due to the redistribution of broken particles as an effect of TRS.The migration of particles towards the TMAZ-NZ transition zone has been also encountered at higher TRS(2000 rpm).The microhardness analysis depicts variation in average hardness from top to bottom of the NZ,minimum for 1500 rpm and maximum for 2000 rpm.The impact strength at 1000 rpm and 1500 rpm remains close to that of BM(21.6 J)while 2000 rpm shows the accountable reduction.The maximum joint efficiency has been achieved at 1500 rpm(84%)and minimum at 1000 rpm(68%)under tensile loading.Fractographic analysis shows mixed mode of failure for BM,1000 rpm and 1500 rpm,whereas 2000 rpm shows the brittle mode of failure.
基金Projects(51772081,51837009,51971091)supported by the National Natural Science Foundation of ChinaProject(HFZL2018CXY003-4)supported by the Industry-University-Research Cooperation of AECC,ChinaProject(kq1902046)supported by the Major Science and Technology Projects of Changsha City,China。
文摘Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear.