期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
大运河文化带新质生产力的时空分异特征与影响因素——基于机器学习XGBoost-SHAP模型 被引量:2
1
作者 周丙锋 史静 +2 位作者 谢新水 刘晟 曹倩倩 《地域研究与开发》 北大核心 2025年第1期14-22,共9页
采用熵值法对大运河文化带的新质生产力进行测算,并深入探究其时空分异特征。基于极限梯度提升算法-可解释机器学习(XGBoost-SHAP)模型对影响因素进行研究,以探讨影响因素之间的交互效应。结果表明:大运河文化带新质生产力发展水平呈现... 采用熵值法对大运河文化带的新质生产力进行测算,并深入探究其时空分异特征。基于极限梯度提升算法-可解释机器学习(XGBoost-SHAP)模型对影响因素进行研究,以探讨影响因素之间的交互效应。结果表明:大运河文化带新质生产力发展水平呈现波动增长态势,相比于绿色生产力、科技生产力,数字生产力占新质生产力比例更大。各地区新质生产力发展水平存在一定差异,北京、江苏、浙江部分地级市为新质生产力发展高峰,河南、安徽为新质生产力发展低谷,且2020年各地新质生产力水平均有所提升。其聚集效应沿大运河呈现“三角”分布现象,且表现出“两角聚集夹分异”的发展趋势。每百人移动电话用户数、全要素劳动生产率等为影响大运河文化带新质生产力水平的主导因素,且各个主导因素之间存在交互效应。 展开更多
关键词 新质生产力 大运河文化带 时空分异 XGBoost-shap模型
在线阅读 下载PDF
基于CatBoost-SHAP-MCM模型的关中地区PM_(2.5)浓度的气象影响因素研究
2
作者 苏佳 聂达文 +3 位作者 李晓萌 张新生 宋金昭 董明放 《环境科学研究》 北大核心 2025年第4期787-797,共11页
为研究关中地区PM_(2.5)浓度变化及其复杂因素间的非线性关系,基于2020年1月−2023年12月的气象数据,从年、季和月不同时间尺度深入分析关中地区PM_(2.5)的空间分异特征;采用最大信息系数分析关中地区PM_(2.5)与其他大气污染物的关系,同... 为研究关中地区PM_(2.5)浓度变化及其复杂因素间的非线性关系,基于2020年1月−2023年12月的气象数据,从年、季和月不同时间尺度深入分析关中地区PM_(2.5)的空间分异特征;采用最大信息系数分析关中地区PM_(2.5)与其他大气污染物的关系,同时利用CatBoost-SHAP-MCM模型识别PM_(2.5)浓度的关键气象影响因素。结果表明:①关中地区PM_(2.5)浓度呈明显的空间分布和季节变异性。年际PM_(2.5)浓度在2021年最低,为42.93μg/m^(3),在2022年最高,达49.09μg/m^(3)。季度和月际变化较为相似,均呈冬季高、夏季低的特征,冬季污染最严重,PM_(2.5)浓度达84.35μg/m^(3),夏季最轻,为21.42μg/m^(3)。西安市、咸阳市和渭南市为高污染城市,铜川市和宝鸡市为低污染城市。②PM_(2.5)浓度与PM10浓度的相关性最高,与CO浓度、SO2浓度相关性均较低。③露点温度、气温、海平面气压、降水量和地面气压为关键气象影响因素,其在各城市表现出显著的影响作用,对关中地区整体和各城市的影响基本保持一致。④在低露点温度、低气温以及低露点温度、高海平面气压和高地面气压等特定因素组合下,其对PM_(2.5)浓度的影响更为显著。研究显示,关中地区PM_(2.5)浓度具有明显的空间分异特征和季节性变化特征,且与露点温度、气温、海平面气压、降水量和地面气压等气象因素密切相关,在特定气象组合条件下PM_(2.5)浓度波动更为显著。 展开更多
关键词 关中地区 PM_(2.5) 影响因素 CatBoost-shap-MCM模型
在线阅读 下载PDF
基于XGBoost−SHAP的综采工作面上隅角瓦斯溯源模型
3
作者 盛武 王灵子 《工矿自动化》 北大核心 2025年第6期21-27,140,共8页
针对目前综采工作面上隅角瓦斯浓度预测模型由于“黑盒”结构导致内部运行逻辑未知、预测结果可解释性弱的问题,提出一种基于XGBoost−SHAP的综采工作面上隅角瓦斯溯源模型。对综采工作面瓦斯涌出浓度关联监测数据进行相关分析,筛选出特... 针对目前综采工作面上隅角瓦斯浓度预测模型由于“黑盒”结构导致内部运行逻辑未知、预测结果可解释性弱的问题,提出一种基于XGBoost−SHAP的综采工作面上隅角瓦斯溯源模型。对综采工作面瓦斯涌出浓度关联监测数据进行相关分析,筛选出特征变量;基于XGBoost搭建上隅角瓦斯浓度预测模型,引入SHAP算法计算每个特征变量对预测结果的贡献值,增强模型透明度,为XGBoost提供全局性解释;最后利用现场多源传感监测数据对模型性能进行验证。实例分析结果表明:①XGBoost模型的决定系数R^(2)、平均绝对误差(MAE)、均方根误差(RMSE)分别为0.93,0.007,0.008,相较于随机森林(RF)、支持向量回归(SVR)和梯度提升决策树(GBDT),拟合优度最高,误差最低。②XGBoost模型的平均相对误差为4.478%,相较于对比模型,具有较高的精度与较好的泛化性能。③依据各输入特征的平均绝对SHAP值,工作面T1瓦斯浓度对上隅角瓦斯浓度影响最大,工作面上隅角瓦斯抽采管道内瓦斯浓度次之,回采煤层瓦斯含量、回采煤层顶板压力等紧随其后,说明XGBoost能捕捉变量间的非线性关系和交互作用,SHAP算法可为XGBoost模型提供全局性解释。 展开更多
关键词 瓦斯浓度预测 上隅角瓦斯溯源 XGBoost模型 shap 可解释性
在线阅读 下载PDF
应用SHAP可解释机器学习模型估测森林蓄积量 被引量:1
4
作者 王元 王玥 +3 位作者 周宇琛 陈伏生 张绿水 刘牧 《东北林业大学学报》 北大核心 2025年第5期66-73,共8页
森林蓄积量是反映森林资源丰富程度的关键指标,精确估测森林蓄积量对于森林资源管理至关重要。以江西省林区为研究对象,运用谷歌地球引擎(Google Earth Engine)平台从Landsat 8遥感影像中提取多个植被指数、单波段及组合特征,并结合国... 森林蓄积量是反映森林资源丰富程度的关键指标,精确估测森林蓄积量对于森林资源管理至关重要。以江西省林区为研究对象,运用谷歌地球引擎(Google Earth Engine)平台从Landsat 8遥感影像中提取多个植被指数、单波段及组合特征,并结合国家森林资源连续清查的地面实测数据,分析不同影像特征参数在森林蓄积量反演中的贡献率。结果表明:对比多元线性回归、神经网络、随机森林和XGBoost模型估测森林蓄积量的精度,随机森林模型估测精度为93.3%,决定系数(R^(2))为0.9337,均方根误差为2.2323,平均绝对误为2.3395;与BP神经网络模型(R^(2)=0.8219)和XGBoost模型(R^(2)=0.7916)相比,模型拟合度和预测效果更佳,比多元线性回归模型(R^(2)=0.688)处理非线性关系的稳定性和可靠性更高。通过解释特征参数的相对重要性,揭示出平均胸径、郁闭度等特征对森林蓄积量影响显著,且随机森林模型中各因子间存在相互作用。 展开更多
关键词 shap解释模型 机器学习模型 森林蓄积量
在线阅读 下载PDF
基于XGBoost-SHAP方法的陕西省PM_(2.5)影响因素分析 被引量:4
5
作者 赵兴赟 张强 +4 位作者 杨方社 郑烈龙 罗嘉昕 史治辉 问思路 《环境科学研究》 北大核心 2025年第5期990-999,共10页
陕西省因经济快速发展及冬季化石燃料的广泛使用,面临着复杂的自然和社会因素导致的PM_(2.5)污染,探究陕西省PM_(2.5)的时空分布特征及其影响因素,对污染治理和空气质量改善具有重要意义。基于2013−2022年中国高分辨率高质量近地表空气... 陕西省因经济快速发展及冬季化石燃料的广泛使用,面临着复杂的自然和社会因素导致的PM_(2.5)污染,探究陕西省PM_(2.5)的时空分布特征及其影响因素,对污染治理和空气质量改善具有重要意义。基于2013−2022年中国高分辨率高质量近地表空气污染物数据集,对陕西省PM_(2.5)浓度的时空变化特征进行研究,通过构建XGBoost模型并结合SHAP方法,分析陕西省PM_(2.5)浓度与气象、地形及植被因素和社会经济因素的关系,阐明各因素对PM_(2.5)浓度的时空影响。结果表明:①时间上,2013−2022年陕西省PM_(2.5)浓度整体呈现下降趋势,年均浓度最大值(56.02μg/m^(3))出现在2013年,在2019−2022年PM_(2.5)年均浓度低于《环境空气质量标准》(GB 3095−2012)二级标准限值(35μg/m^(3));空间上,陕西省呈现“关中高、陕南和陕北低”的污染空间格局。②在所研究的影响因素中,XGBoost-SHAP方法揭示了影响陕西省PM_(2.5)浓度的主要因素依次为高程、相对湿度、温度和人口密度,其中,高程和相对湿度对陕西省PM_(2.5)浓度具有负向影响,而温度和人口密度则表现为正向影响。③通过划分影响区发现,陕北、关中及陕南地区PM_(2.5)主要影响因素的作用方向与影响强度存在显著的空间异质性。研究显示,2013−2022年陕西省PM_(2.5)浓度大幅下降,PM_(2.5)的主要影响因素在不同区域存在空间差异,治理PM_(2.5)污染需要综合考虑区域异质性与多重影响因素的协同作用。 展开更多
关键词 PM_(2.5) XGBoost模型 shap方法 时空特征 影响因素
在线阅读 下载PDF
基于机器学习和SHAP算法的声波测井曲线重构及可解释性分析 被引量:7
6
作者 黎子豪 蒋恕 《地质科技通报》 北大核心 2025年第1期321-331,共11页
测井技术是查明地下岩性、地层及地质流体的关键技术手段,在石油勘探行业中发挥着至关重要的作用。然而,由于仪器损坏、井眼条件等因素,经常造成测井数据缺失、曲线不全等问题,传统多元线性回归或经验公式方法无法合理地构建测井曲线间... 测井技术是查明地下岩性、地层及地质流体的关键技术手段,在石油勘探行业中发挥着至关重要的作用。然而,由于仪器损坏、井眼条件等因素,经常造成测井数据缺失、曲线不全等问题,传统多元线性回归或经验公式方法无法合理地构建测井曲线间的关系模型使得曲线重构精度相对较低,机器学习算法虽能在大量数据之间找到最为合适的数据映射关系进而提高模型精度,但相较而言其所构建的黑箱模型无法得到良好的解释。近期,可解释性算法的运用使得机器学习在重构测井曲线中的应用更为合理。通过将支持向量回归(support vector regression,简称SVR),随机森林(random forest,简称RF)以及极限梯度提升(extreme gradient boosting,简称XGBoost)和传统多元线性回归方法(linear regression,简称LR)的对比对英国能源局22-30b-11号井声波测井曲线进行了模型重构并基于shapley additive explanations(SHAP)算法对XGBoost模型进行了解释。结果表明,XGBoost在测试集上的决定系数(R2)和均方误差(MSE)分别为0.996,6.371,优于SVR的0.990、15.755和RF的0.993、9.871,而传统多元线性回归方法则为0.969、48.895,表明XGBoost对声波时差曲线的重构具有更高的准确度和更好的泛化性能。创新性地采用SHAP算法对XGBoost黑箱模型的解释表明,在模型构建选择重要特征时,XGBoost模型采用地层温度数据作为特征明显合理于多元线性回归方法采用的井径测井数据。最后基于SHAP对模型进行了单点和全局特征交互解释。上述结果表明在声波测井曲线重构方面,机器学习算法明显优于传统的多元线性回归方法,并证明了SHAP算法在声波测井曲线重构机器学习模型解释方面的可行性,为后续机器学习在测井解释中的发展提供了新的思路。 展开更多
关键词 测井曲线重构 机器学习 模型解释 shap算法 声波测井
在线阅读 下载PDF
基于随机森林与SHAP算法的致密砂岩气暂堵效果的影响因素分析
7
作者 黄浩 车恒达 +3 位作者 孔祥伟 辛富斌 向九洲 吉俊杰 《科学技术与工程》 北大核心 2025年第26期11135-11143,共9页
为深入研究地质因素、分段及射孔参数、压裂施工因素对簇间暂堵效果的影响,通过构建暂堵效果量化模型和公式,收集苏里格区块暂堵井数据76组,融合随机森林和SHAP(Shapley additive explanations)值算法,建立暂堵效果算法模型。经过对暂... 为深入研究地质因素、分段及射孔参数、压裂施工因素对簇间暂堵效果的影响,通过构建暂堵效果量化模型和公式,收集苏里格区块暂堵井数据76组,融合随机森林和SHAP(Shapley additive explanations)值算法,建立暂堵效果算法模型。经过对暂堵效果量化模型和公式、暂堵效果算法模型验证,发现暂堵效果量化值与产气贡献率正相关,P=0.037,证明暂堵效果量化模型和公式的准确性高;又因暂堵效果算法模型中,训练集与测试集的MSE、MAE、R^(2)相差微小,证明该模型的泛化能力较强且准确性高。在暂堵效果算法模型的基础之上,开展暂堵效果的影响因素分析,结果表明:总段数、渗透率、暂堵球数量、簇间距和砂比这5个因素对于暂堵效果的影响占比最大。进一步分析单影响因素,发现随总段数增加,暂堵效果增加的规律只适用于直井,对水平井不适用;随渗透率增加,暂堵效果变差;暂堵球数量<50个、簇间距>20 m、砂比介于18%~20%,暂堵效果均可达到正向增长。研究结果可为苏里格等气田现场暂堵作业设计提供借鉴和参考。 展开更多
关键词 苏里格气田 致密砂岩气 暂堵效果 随机森林 shap(shapley additive explanations)值 模型解释
在线阅读 下载PDF
基于XGBOOST-SHAP的地铁建成环境与站点出行距离的非线性关系研究 被引量:13
8
作者 李培坤 陈旭梅 +3 位作者 鲁文博 马嘉欣 刘屹 王昊 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第4期1624-1633,共10页
相较于传统地铁客流量特征分析,地铁站点平均出行距离的研究可以更加精细化了解地铁网络客流流动性特征。为探究多重建成环境与站点平均出行距离之间的复杂关系,以西安市地铁系统为研究对象,从土地利用、兴趣点分布、周边交通建成环境... 相较于传统地铁客流量特征分析,地铁站点平均出行距离的研究可以更加精细化了解地铁网络客流流动性特征。为探究多重建成环境与站点平均出行距离之间的复杂关系,以西安市地铁系统为研究对象,从土地利用、兴趣点分布、周边交通建成环境、站点自身属性等方面构建11种建成环境指标,建立基于极端梯度提升的XGBOOST-SHAP归因分析架构的可解释性机器学习模型,以揭示两者之间的非线性关系。同时,将该模型拟合回归效果与梯度提升决策树(GBDT)及最小二乘回归(OLS)进行比较,以验证XGBOOST模型在拟合回归效果上的优势。结果表明:XGBOOST模型的R方、平均绝对误差(MAE)、均方误差(MSE)值分别为0.75、0.95、1.36,其拟合效果要优于GBDT与OLS模型。站点平均出行距离呈现出明显的环状分布的空间异质性。SHAP归因分析结果表明:距市中心距离特征贡献最大,路网密度、土地利用混合度、公交线路数量以及住宅数量对出行距离的贡献度也相对较高;POI香农熵指数、餐饮服务点对平均出行距离的正负反馈不明显;其余指标对平均出行距离的影响均呈现出正负反馈机制结合的趋势。研究结果对交通需求分析、线路容量优化、运营效果评估等提供了数据支撑,可有效提高地铁交通便利性,满足不同区域的出行需求并改善整个地铁系统的效率和可持续性。 展开更多
关键词 地铁站点 建成环境 出行距离 XGBOOST模型 shap归因分析 非线性关系
在线阅读 下载PDF
基于随机森林模型与SHAP算法的渝东北烟区土壤交换酸含量影响因素分析研究 被引量:3
9
作者 李昕容 杨超 +2 位作者 张鑫 周亚男 刘洪斌 《中国烟草学报》 CAS CSCD 北大核心 2024年第2期52-60,共9页
【背景和目的】土壤交换酸含量在农业生产中对于指导施肥和调节土壤pH具有重要作用,研究环境因子(气候、地形、成土母岩)和种植年限对土壤交换酸(Exchangeable Acidity, EA)含量的影响。【方法】以重庆市东北烟区为研究区,对该区中483... 【背景和目的】土壤交换酸含量在农业生产中对于指导施肥和调节土壤pH具有重要作用,研究环境因子(气候、地形、成土母岩)和种植年限对土壤交换酸(Exchangeable Acidity, EA)含量的影响。【方法】以重庆市东北烟区为研究区,对该区中483个采样点的土壤交换酸数据进行统计分析,构建随机森林(Random Forest, RF)模型并结合Shapley Additive exPlanations(SHAP)算法,探讨影响土壤交换酸含量的主控因素。【结果】(1)研究区土壤交换酸含量在1.56~27.50 cmol/kg之间,与降水、日照时数、坡向、种植年限呈极显著负相关性。二叠系石灰岩发育的土壤交换酸含量显著高于三叠系石灰岩发育的土壤。(2)RF模型可解释土壤交换酸含量空间变异的64%,影响因子对土壤交换酸含量的重要性为气候>成土母岩>种植年限>地形。(3)SHAP算法揭示了土壤交换酸含量在不同气候条件下存在明显的阈值效应。当年均降水量、日照时数和均温分别超过1250 mm、1290 h和12℃时,会导致土壤交换酸含量的减少,反之则会促使其增加。【结论】气候是影响土壤交换酸含量变异最重要的环境因素,其中降水和日照时数是最重要的气候因子,研究结果可为烟田土壤酸化管理调控提供参考。 展开更多
关键词 土壤交换酸 环境因子 随机森林 shap算法 阈值
在线阅读 下载PDF
基于学科交叉驱动的颠覆性技术预测研究 被引量:2
10
作者 王萌萌 吴艾晗 +1 位作者 邓琨升 郭晓彤 《情报杂志》 北大核心 2025年第3期72-80,138,共10页
[研究目的]新质生产力的发展极大程度上依赖于颠覆性技术的突破。准确识别颠覆性技术有助于推动生产能力现代化,增强国家实力和社会发展水平。[研究方法]以专利家族作为技术分析单元,融合专利数据和论文数据,从多样性、均衡性、差异性和... [研究目的]新质生产力的发展极大程度上依赖于颠覆性技术的突破。准确识别颠覆性技术有助于推动生产能力现代化,增强国家实力和社会发展水平。[研究方法]以专利家族作为技术分析单元,融合专利数据和论文数据,从多样性、均衡性、差异性和Rao-Stirling综合维度挖掘颠覆性技术所引证知识的学科交叉特征,并据此采用逻辑回归算法识别与技术颠覆性程度具有显著关联的候选特征;构建八类机器学习模型并优选颠覆性技术预测效果最佳的模型,通过SHAP模型揭示学科交叉特征在颠覆性技术预测中的相对贡献和特征关联机制。[研究结果/结论]人工智能领域研究结果表明,所引证专利和论文的多样性、均衡性和差异性特征均对颠覆性技术的产生具有显著影响,相较于其他八类机器学习模型,XGBoost模型在综合性能上取得了最佳表现,其中引证论文的差异性、专利的多样性和差异性等交叉驱动特征在颠覆性技术预测中贡献度最高。 展开更多
关键词 颠覆性技术 学科交叉 专利家族 专利数据 科学论文 人工智能 机器学习 shap模型
在线阅读 下载PDF
基于可解释机器学习的混凝土重力坝变形安全监控模型 被引量:2
11
作者 程琳 袁喜娜 +2 位作者 马春辉 贾冬焱 徐笑颜 《水利水电科技进展》 北大核心 2025年第3期77-85,共9页
针对目前基于机器学习的大坝安全监控模型无法给出模型预测解释的问题,引入SHAP值理论,并结合LightGBM模型,建立了一种具备可解释性的混凝土重力坝变形安全监控模型,且该模型可以量化每个影响因子的具体贡献。工程实例验证结果表明,该... 针对目前基于机器学习的大坝安全监控模型无法给出模型预测解释的问题,引入SHAP值理论,并结合LightGBM模型,建立了一种具备可解释性的混凝土重力坝变形安全监控模型,且该模型可以量化每个影响因子的具体贡献。工程实例验证结果表明,该模型考虑了变形与环境量之间复杂的非线性关系,更接近真实情况,不仅具有良好的拟合精度和预测精度,还能对模型进行全局和局部的解释。 展开更多
关键词 混凝土重力坝 变形安全监控 可解释机器学习 shap值理论 LightGBM模型
在线阅读 下载PDF
基于GIS与随机森林算法的湖北田歌孕育地理分布区域模型研究 被引量:2
12
作者 范元玲 曾艳 +5 位作者 朱有晨 潘明辰 王京 田洁 杨子锐 冀琴 《北京师范大学学报(自然科学版)》 北大核心 2025年第3期418-428,共11页
对湖北田歌的分布与田歌孕育的地理环境之间的关系进行了探究,以期为区域音乐的实证研究提供新的思路和方法.以湖北田歌为研究对象,选取1 248个田歌样本数据集,运用地理信息系统(geographic information system,GIS)对初步选定的田歌分... 对湖北田歌的分布与田歌孕育的地理环境之间的关系进行了探究,以期为区域音乐的实证研究提供新的思路和方法.以湖北田歌为研究对象,选取1 248个田歌样本数据集,运用地理信息系统(geographic information system,GIS)对初步选定的田歌分布及音乐要素影响因子进行建库,基于随机森林及可解释性算法(shapley additive explanations,SHAP)构建田歌影响因子体系分析模型,通过受试者工作特性曲线(receiver operating characteristic curve,ROC)对模型的有效性进行评价,分析田歌的分布、音乐要素与地理环境之间的关系.研究结果表明:1)基于随机森林构建的田歌影响因子体系模型预测效果较好,其曲线下面积(area under the curve,AUC)的值为0.82;2)对田歌产生及音乐要素影响因子重要性排序得出,多年平均降雨量和多年平均气温是孕育湖北田歌的主要因子.其随机森林及SHAP算法,能在一定程度上预测湖北田歌分布格局,对区域音乐文化与地理关联性研究具有重要意义. 展开更多
关键词 田歌 地理信息系统 机器学习 shap 随机森林模型
在线阅读 下载PDF
台风“摩羯”影响海南岛植被变化的关键因子及阈值研究
13
作者 李伟光 吕润 +3 位作者 李海亮 陈小敏 侯伟 邹海平 《热带作物学报》 北大核心 2025年第9期2250-2258,共9页
本研究旨在识别台风“摩羯”影响海南岛植被变化的关键因子,确定其致灾阈值,并为台风灾害预测、评估及防灾减灾提供科学依据。基于GEE平台获取台风“摩羯”登陆前后(2024年8月19日至9月18日)Sentinel-2 NDVI数据,结合地形与气象要素(台... 本研究旨在识别台风“摩羯”影响海南岛植被变化的关键因子,确定其致灾阈值,并为台风灾害预测、评估及防灾减灾提供科学依据。基于GEE平台获取台风“摩羯”登陆前后(2024年8月19日至9月18日)Sentinel-2 NDVI数据,结合地形与气象要素(台风路径、最大风速、最低气压和降水量等),运用XGBoost模型预测台风后归一化植被指数(NDVI)变化,并采用SHAP方法解析气象因子的非线性效应。XGBoost模型拟合结果显示,决定系数(R^(2))为0.75,均方根误差(RMSE)为0.12,表明该模型在预测台风后NDVI变化方面具有较高精度。XGBoost特征重要性分析表明,台风前NDVI、台风距离和最大风速为主要影响因子,而坡度与坡向的影响较弱。进一步SHAP分析表明,台风距离和最大风速为影响NDVI变化的关键气象因子。当台风距离<76.4 km时,NDVI显著下降;而当最大风速超过29.3 m/s时,NDVI变化明显加剧,表明强风对植被破坏具有关键作用。台风距离<76.4 km(约11级风圈内)及最大风速超过29.3 m/s的区域内,植被受损尤为严重。建议在台风预警及灾前防御措施中重点关注上述高风险区域。 展开更多
关键词 台风“摩羯” 致灾因子 植被变化 致灾阈值 XGBoost模型 shap分析
在线阅读 下载PDF
基于最大光能利用率动态校正的京津冀地区植被碳汇反演研究
14
作者 姜雪梅 曹永强 +2 位作者 么嘉棋 刘子华 周姝含 《生态学报》 北大核心 2025年第13期6374-6389,共16页
陆地生态系统在全球碳循环中扮演重要角色,植被碳汇能力是衡量生态系统质量与气候变化响应的重要指标。近年来,京津冀地区作为我国首都经济圈,其植被碳汇对区域绿色发展和“双碳”目标具有重要意义。然而,已有研究在碳汇反演中面临光能... 陆地生态系统在全球碳循环中扮演重要角色,植被碳汇能力是衡量生态系统质量与气候变化响应的重要指标。近年来,京津冀地区作为我国首都经济圈,其植被碳汇对区域绿色发展和“双碳”目标具有重要意义。然而,已有研究在碳汇反演中面临光能利用率等经验参数鲁棒性差等问题,导致碳汇估算结果存在较大不确定性。研究基于2003—2022年长时序多源主被动卫星遥感传感器估计京津冀碳汇时空变化。结合GEDI高分辨率激光雷达改进了植被最大光能利用率的动态校正方法,优化了CASA模型对NPP的模拟能力;基于土壤异养呼吸模型,估算了近20年京津冀地区的NEP;运用SHAP模型量化了气温、降水和太阳辐射等环境因子对植被碳汇的驱动作用及其非线性交互关系。结果表明:(1)基于GEDI实现了对最大光能利用率长时间序列的动态校正,森林的光能利用率模拟值最大为0.667—0.712 gC/MJ,这一改进方法能够可靠地对京津冀地区NPP进行模拟。(2)NEP多年均值为179.17 gC m^(-2)a^(-1),季节变化为夏季>春季>秋季>冬季,空间上呈现从冀北山区向东南部平原和城市区域递减的分布特征,且森林对京津冀NEP的贡献率达47.60%。(3)各驱动因子对NEP的重要性和主效应程度为气温>降水>太阳辐射,且气温和降水对NEP的正交互作用最强。研究结论可促进对京津冀地区植被碳汇动态变化机制的理解,同时为制定生态管理和气候变化适应策略提供科学依据。 展开更多
关键词 植被碳汇 最大光能利用率 shap模型 驱动因子 京津冀地区
在线阅读 下载PDF
基于XGBoost的COPD患者肺癌发生预测模型的建立与评价
15
作者 杨靖 焦童 +4 位作者 董宇娇 姚晨雨 孔群钰 石婕 杨拴盈 《西安交通大学学报(医学版)》 北大核心 2025年第2期345-352,共8页
目的 利用慢性阻塞性肺疾病(COPD)患者的临床特征数据构建XGBoost预测模型,并评价预测模型对COPD患者肺癌发生风险早期预测的效能。方法 本研究为回顾性横断面研究,采用整群抽样的方法,对2018年1月1日至2022年12月31日在西安交通大学第... 目的 利用慢性阻塞性肺疾病(COPD)患者的临床特征数据构建XGBoost预测模型,并评价预测模型对COPD患者肺癌发生风险早期预测的效能。方法 本研究为回顾性横断面研究,采用整群抽样的方法,对2018年1月1日至2022年12月31日在西安交通大学第二附属医院住院的经临床确诊的COPD患者进行筛选,共收集4 008例有完整数据的患者。首先对各特征基线进行分析,再利用XGBoost构建COPD患者肺癌发生风险预测模型,并利用SHAP(SHapley Additive exPlanation)值对各特征重要性进行量化和归因;决策曲线分析(DCA)曲线评价临床应用价值。结果 使用28个变量构建COPD患者肺癌发生风险模型之后,按照变量重要性排序及临床经验,筛选8个变量,重新构建预测模型,模型效能在训练集和测试集中分别为0.948(0.938,0.958)、0.797(0.738,0.856)。SHAP图显示CEA、CA125、FIB、嗜酸性粒细胞、PLT、D-二聚体升高和TT缩短均会增加COPD患者肺癌发生风险,DCA曲线显示该预测模型具有临床应用价值,可以帮助医师做出更准确的预后预测和治疗决策。结论 基于XGBoost成功建立了预测模型,以特征子集实现了对COPD患者肺癌发生风险的早期预测。 展开更多
关键词 慢性阻塞性肺疾病(COPD) 危险性评估 预测模型 XGBoost shap
在线阅读 下载PDF
基于可解释性机器学习的芬顿工艺降解有机污染物速率的研究
16
作者 于林堂 陈咚咚 +1 位作者 陶翠翠 朱腾义 《中国环境科学》 北大核心 2025年第8期4294-4302,共9页
采用机器学习模型,包括多元线性回归(MLR)和轻量级梯度提升机(LGB)算法,预测芬顿工艺中57种有机污染物的降解效率.通过SHAP方法对模型进行机理解释,识别了影响降解效率的关键因素.研究结果表明,LGB模型在预测精度上(R_(adj)^(2)=0.969, ... 采用机器学习模型,包括多元线性回归(MLR)和轻量级梯度提升机(LGB)算法,预测芬顿工艺中57种有机污染物的降解效率.通过SHAP方法对模型进行机理解释,识别了影响降解效率的关键因素.研究结果表明,LGB模型在预测精度上(R_(adj)^(2)=0.969, Q^(LOO)^(2)=0.925, R_(ext)^(2)=0.844)优于MLR模型(R_(adj)^(2)=0.831, Q_(LOO)^(2)=0.802, R_(ext)^(2)=0.861).SHAP分析揭示了温度、分子三维结构和原子电离能力是影响降解效率的主要因素.本研究为优化芬顿工艺的操作条件和提升降解效率提供了科学依据,对水处理领域的研究和实践具有重要的指导意义. 展开更多
关键词 芬顿氧化工艺 污染物降解速率常数log K 有机污染物 机器学习模型 shap分析
在线阅读 下载PDF
利用可解释机器学习模型判别豫西巩义市康店镇黄土地质灾害易发性 被引量:2
17
作者 包峻帆 陈婕 +10 位作者 杨文涛 杨泽强 侯文青 陈恪 袁野 杨明权 景斐媛 刘淼昕 刘哲 张媛媛 黄灿 《科学技术与工程》 北大核心 2025年第15期6200-6219,共20页
黄土丘陵区是地质灾害高发频发的地区之一,亟需采用合适的评价因子和训练模型开展地质灾害易发性评价研究。以郑州“7·20”特大暴雨期间受灾最严重的乡镇巩义市康店镇为研究区,基于卫星遥感解译、实地调查、无人机航拍及相关资料收... 黄土丘陵区是地质灾害高发频发的地区之一,亟需采用合适的评价因子和训练模型开展地质灾害易发性评价研究。以郑州“7·20”特大暴雨期间受灾最严重的乡镇巩义市康店镇为研究区,基于卫星遥感解译、实地调查、无人机航拍及相关资料收集,构建覆盖黄土界面、人类工程活动、水动力作用3个主控因素13个影响因子的评价体系,采用CatBoost模型、XGBoost模型和LightGBM模型共3种机器学习算法,开展地质灾害易发性评价研究,基于性能最优的机器学习模型,运用SHAP(shapley additive explanations)算法完成特征全局解释与依赖性分析。结果表明:CatBoost模型的精度高于其他模型(XGBoost和LightGBM),在AUC(area under curve)值、SHAP准确度、精确率、召回率、F_(1)分数和野外验证中均表现最优,其极高、高、中、低、极低易发区域面积占比分别为3.19%、1.40%、2.04%、5.93%、87.44%,极高、高易发区域主要分布在人类活动强烈的冲沟两侧,切坡建房是地质灾害发生的重要诱因。本次研究旨在优化建模思路,对建模过程的不确定性和可解释性进行研究,对机器学习的易发性决策机理进行解释分析,为豫西黄土丘陵区地质灾害防治提供科学依据。 展开更多
关键词 黄土丘陵区 地质灾害易发性 机器学习模型 shap 模型解释
在线阅读 下载PDF
基于CKAN-IWTC-LSTM的海上风电功率预测方法
18
作者 田书欣 姜皓喆 +3 位作者 秦世耀 符杨 杨喜军 李振坤 《智慧电力》 北大核心 2025年第11期91-98,共8页
针对海洋极端环境复杂性、空气动力学非线性、海上风电功率的强随机波动性等特点,提出一种融合Kolmogorov-Arnold网络架构的改进小波卷积长短期记忆网络(CKAN-IWTC-LSTM)海上风电功率预测方法。首先,采用引入星型聚合分发模块(STAD)的... 针对海洋极端环境复杂性、空气动力学非线性、海上风电功率的强随机波动性等特点,提出一种融合Kolmogorov-Arnold网络架构的改进小波卷积长短期记忆网络(CKAN-IWTC-LSTM)海上风电功率预测方法。首先,采用引入星型聚合分发模块(STAD)的改进小波卷积(IWTC)特征提取方法,以增强海上多维气象特征的交互表征;其次,构建基于KAN架构强化输出的海上风电LSTM预测模型,挖掘海上风电功率数据时序变化规律;最后,建立多维度评估指标体系,并基于沙普利加性解释(SHAP)方法量化时序特征与环境特征对海上风电功率的贡献度。算例分析表明,所提方法能够有效实现海上风电功率的精准预测。 展开更多
关键词 海上风电 CKAN-IWTC-LSTM模型 小波卷积 功率预测 沙普利加性原理
在线阅读 下载PDF
基于MLP-AdaBoost模型的混凝土抗压强度预测研究 被引量:1
19
作者 赵佳亮 达列雄 +1 位作者 郭鸿 王婷 《混凝土》 北大核心 2025年第6期17-22,共6页
针对传统机器学习模型对混凝土抗压强度预测方面的局限性,提出了采用集成MLP和AdaBoost算法的融合模型。结合影响混凝土抗压强度共8个特征,以MLP和AdaBoost两种算法作为基模型,加权线性回归作为元模型,构建MLP-Adaboost融合模型,然后采... 针对传统机器学习模型对混凝土抗压强度预测方面的局限性,提出了采用集成MLP和AdaBoost算法的融合模型。结合影响混凝土抗压强度共8个特征,以MLP和AdaBoost两种算法作为基模型,加权线性回归作为元模型,构建MLP-Adaboost融合模型,然后采用贝叶斯优化技术来确定最优的超参数组合,以确保模型预测的准确性。试验表明:五折交叉验证确定系数指标(R^(2))达到0.957,均方根误差指标(RMSE)为3.798,平均绝对误差指标(MAE)为2.769。将MLP-AdaBoost融合模型与其他模型的预测结果作比较分析,得到MLP-AdaBoost融合模型的预测精度更高。最后通过SHAP库对混凝土数据集的组合预测模型进行可解释性分析,得到模型的预测逻辑与工程领域的实际操作一致,证明了该模型的合理性,为混凝土抗压强度的准确预测提供了一种有效的新方法。 展开更多
关键词 混凝土抗压强度预测 ADABOOST 贝叶斯优化 MLP 融合模型 shap
在线阅读 下载PDF
融合多源异构数据的ICO欺诈预测与可解释分析模型 被引量:3
20
作者 卢加荣 廖彬 +1 位作者 刘怡 陈海龙 《计算机应用研究》 北大核心 2025年第2期357-364,共8页
为了解决首次代币发行(ICO)欺诈检测研究中存在的特征建模单一、模型缺乏可解释性等问题,提出一种融合多源异构数据的ICO欺诈预测和可解释分析模型IICOFP。首先,融合ICO项目基本信息、评级分数、社交媒体等多源异构数据,通过Lasso特征... 为了解决首次代币发行(ICO)欺诈检测研究中存在的特征建模单一、模型缺乏可解释性等问题,提出一种融合多源异构数据的ICO欺诈预测和可解释分析模型IICOFP。首先,融合ICO项目基本信息、评级分数、社交媒体等多源异构数据,通过Lasso特征选择和Tomek-Link欠采样更有效地实现对ICO的特征建模;其次,基于GBDT算法训练ICO欺诈预测模型,并引入SHAP框架从多个角度分析欺诈型ICO的影响因素,有力增强模型的可解释性。实验结果表明,该模型的准确率、精确率、召回率、F 1分数和AUC值分别达到87.76%、85.37%、90.52%、87.87%和87.82%,各项性能比已有的最佳模型提高了约2%~10%,验证了融合多源异构数据进行特征建模在ICO欺诈预测中的关键作用(实验数据及代码:https://github.com/Lujiarong1203/IICOFP)。 展开更多
关键词 首次代币发行(ICO) 欺诈预测 GBDT模型 shap框架 可解释性
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部