高浓度表面活性物质的分离是泡沫分离过程的难题,也是制约泡沫分离技术应用于工业化生产的瓶颈。为了解决高浓度表面活性物质泡沫分离的难题,以阴离子表面活性剂十二烷基硫酸钠(SDS)水溶液为体系,研究了在其临界胶束浓度(CMC)附近时,温...高浓度表面活性物质的分离是泡沫分离过程的难题,也是制约泡沫分离技术应用于工业化生产的瓶颈。为了解决高浓度表面活性物质泡沫分离的难题,以阴离子表面活性剂十二烷基硫酸钠(SDS)水溶液为体系,研究了在其临界胶束浓度(CMC)附近时,温度对SDS水溶液气泡直径、泡沫稳定性、富集比及回收率的影响。结果表明:温度对高浓度表面活性物质的泡沫分离有显著影响。当SDS水溶液浓度分别为1.2、2.3、3.5 g L 1,温度从30 C升高到70 C时,泡沫稳定性先增大后减小,在pH 6.9、表观气速2.4×10 3m s 1、装液量200 mL的操作条件下,气泡直径先减小后增大,富集比提高了3~5倍,回收率降低了34%~65%。展开更多
The interaction of methylene blue(MB) and bovine serum albumin(BSA) is investigated in the SDS micelle system which is simulated as one kind of coexisted albumin. The interaction parameters of MB and BSA and simulated...The interaction of methylene blue(MB) and bovine serum albumin(BSA) is investigated in the SDS micelle system which is simulated as one kind of coexisted albumin. The interaction parameters of MB and BSA and simulated albumin such as partition coefficientκ、 normal binding free energyΔ G、 average binding number n are calculated. The results show that most of MB is in the form of monomer in SDS micelle systems; the main interaction of MB and BSA is of static electric and H-bind force,and that of MB and simulated albumin is only of static electric force.展开更多
文摘高浓度表面活性物质的分离是泡沫分离过程的难题,也是制约泡沫分离技术应用于工业化生产的瓶颈。为了解决高浓度表面活性物质泡沫分离的难题,以阴离子表面活性剂十二烷基硫酸钠(SDS)水溶液为体系,研究了在其临界胶束浓度(CMC)附近时,温度对SDS水溶液气泡直径、泡沫稳定性、富集比及回收率的影响。结果表明:温度对高浓度表面活性物质的泡沫分离有显著影响。当SDS水溶液浓度分别为1.2、2.3、3.5 g L 1,温度从30 C升高到70 C时,泡沫稳定性先增大后减小,在pH 6.9、表观气速2.4×10 3m s 1、装液量200 mL的操作条件下,气泡直径先减小后增大,富集比提高了3~5倍,回收率降低了34%~65%。
文摘The interaction of methylene blue(MB) and bovine serum albumin(BSA) is investigated in the SDS micelle system which is simulated as one kind of coexisted albumin. The interaction parameters of MB and BSA and simulated albumin such as partition coefficientκ、 normal binding free energyΔ G、 average binding number n are calculated. The results show that most of MB is in the form of monomer in SDS micelle systems; the main interaction of MB and BSA is of static electric and H-bind force,and that of MB and simulated albumin is only of static electric force.