To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundati...To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundations under a strip footing,from macro to micro scales.The results demonstrate that the bearing characteristics of coral sand slope foundations can be successfully modeled by utilizing breakable corner particles in simulations.The dual effects of interlocking and breakage of corners well explained the specific shallower load transmission and narrower shear stress zones in breakable corner particle slopes.Additionally,the study revealed the significant influence of breakable corners on soil behaviors on slopes.Furthermore,progressive corner breakage within slip bands was successfully identified as the underling mechanism in determining the unique bearing characteristics and the distinct failure patterns of breakable corner particle slopes.This study provides a new perspective to clarify the behaviors of slope foundations composed of breakable corner particle materials.展开更多
Transparent sand is a special material to realize visualization of concealed work in geotechnical engineering. To investigate the dynamic characteristics of transparent sand, a series of undrained cyclic simple shear ...Transparent sand is a special material to realize visualization of concealed work in geotechnical engineering. To investigate the dynamic characteristics of transparent sand, a series of undrained cyclic simple shear tests were conducted on the saturated transparent sand composed of fused quartz and refractive index-matched oil mixture. The results reveal that an increase in the initial shear stress ratio significantly affects the shape of the hysteresis loop, particularly resulting in more pronounced asymmetrical accumulation. Factors such as lower relative density, higher cyclic stress ratios and higher initial shear stress ratio have been shown to accelerate cyclic deformation, cyclic pore water pressure and stiffness degradation. The cyclic liquefaction resistance curves decrease as the initial shear stress ratio increases or as relative density decreases. Booker model and power law function model were applied to predict the pore water pressure for transparent sand. Both models yielded excellent fits for their respective condition, indicating a similar dynamic liquefaction pattern to that of natural sands. Finally, transparent sand displays similar dynamic characteristics in terms of cyclic liquefaction resistance and Kα correction factor. These comparisons indicate that transparent sand can serve as an effective means to mimic many natural sands in dynamic model tests.展开更多
In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.S...In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.Such defects are identified as crucial contributors to the failure and instability of the surrounding rock,subsequently impacting the engineering stability.The study aimed to investigate the impact of fracture geometry and confining pressure on the deformation,failure characteristics,and strength of specimens using sand powder 3D printing technology and conventional triaxial compression tests.The results indicate that the number of fractures present considerably influences the peak strength,axial peak strain and elastic modulus of the specimens.Confining pressure is an important factor affecting the failure pattern of the specimen,under which the specimen is more prone to shear failure,but the initiation,expansion and penetration processes of secondary cracks in different fracture specimens are different.This study confirmed the feasibility of using sand powder 3D printing specimens as soft rock analogs for triaxial compression research.The insights from this research are deemed essential for a deeper understanding of the mechanical behavior of fractured surrounding rocks when under triaxial stress state.展开更多
To explore the penetration resistance of calcareous sand media,penetration tests have been conducted in the velocity range of 200-1000 m/s using conical-nosed projectiles with a diameter of 14.5 mm.Further,a pseudo fl...To explore the penetration resistance of calcareous sand media,penetration tests have been conducted in the velocity range of 200-1000 m/s using conical-nosed projectiles with a diameter of 14.5 mm.Further,a pseudo fluid penetration model applicable to the penetration of rigid projectiles in sand media is established according to the approximate flow of compacted sand in the adjacent zone of penetration.The correlation between the impedance function of projectile-target interaction and the internal friction features of pseudo fluid is clarified,and the effects of sand density,cone angle of nose-shaped projectile,and dynamic hardness on the penetration depth are investigated.The results verify the feasibility,wide applicability,and much lower error(with respect to the experimental data)of the proposed model as compared to the Slepyan hydrodynamic model.展开更多
Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale m...Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale model test of sand-flow method. The real-time data of sand-deposit height and radius were obtained by the self-developed sand-deposit detectors. The test results show that the detecting method is simple and has high precision. In the use of sand-flow method, the sand-carrying capability of fluid is limited, and sand particles are all transported to the sand-deposit periphery through crater, gap and chutes after the sand deposit formed. The diffusion range of the particles outside the sand-deposit does not exceed 2.0 m. Severe sorting of sand particles is not observed because of the unique oblique-layered depositing process. The temporal and spatial distributions of gap and chutes directly affect the sand-deposit expansion, and the expansion trend of the average sand-deposit radius accords with quadratic time-history curve.展开更多
High-speed train running in the sand environment is different from the general environment. In the former situation, there will be sand load applied on high-speed train(SLAHT) caused by sand particles hitting train su...High-speed train running in the sand environment is different from the general environment. In the former situation, there will be sand load applied on high-speed train(SLAHT) caused by sand particles hitting train surface. This will have a great impact on the train stability, running drag and surface corrosion. Numerical simulation method of SLAHT in sand environment is studied. The velocity and mass flow rate models of saltation and suspension sand particles and the calculation model of SLAHT caused by sand particles hitting train surface are established. The discrete phase method is adopted for numerical simulating the process of saltation and suspension sand particles moving to train surface and generating sand load. By comparison with the field tests, the numerical simulation reliability is analysed. The theoretical formula of SLAHT changing with cross-wind and train speed is proposed. SLAHT changing law is analyzed. Research results indicate that SLAHT changing with cross-wind and train speed is a quadratic relationship. When train speed is constant, SLAHT increases quadratically with cross-wind speed improvement. When cross-wind speed is constant, SLAHT increases quadratically with train speed improvement.展开更多
In the view of the problems existing in horizontal well,such as sand depositing and cleaning difficulty of borehole,a technology with rotating jet suitable to resolution of the problems was presented.Based on liquid s...In the view of the problems existing in horizontal well,such as sand depositing and cleaning difficulty of borehole,a technology with rotating jet suitable to resolution of the problems was presented.Based on liquid solid two-phase flow theory,the analyses on the sand movement law and the swirling field influential factors were conducted.Results show that:1) With the increasing of displacement in horizontal section annulus,swirling field strength increases,and when the displacement is constant,the closer from the nozzle,the stronger the swirling field strength is;2) Head rotating speed and liquid viscosity have little influence on the swirling field strength,but the sand-carrying rate of fluid can increase by increasing liquid viscosity in a certain range;3) Rotating the string and reducing its eccentricity in annulus are conducive for sand migration in the annulus;4) The sand can be suspended and accelerated again and the swirling field strength is enhanced by the helix agitator.Hence,the research results provide the theoretical basis for the design and application of rotating jet tool.展开更多
A new technology characterized by rapidly non-mechanical settlement of unclassified tailings was developed based on a large number of tests, and dynamic settlement and continual slurry preparation without hardening in...A new technology characterized by rapidly non-mechanical settlement of unclassified tailings was developed based on a large number of tests, and dynamic settlement and continual slurry preparation without hardening in vertical sand silo were eventually realized by the addition of an effective flocculating agent (NPA). The results show that the sedimentation velocity of interface between unclassified tailings and water after the addition of NPA increases by 10-20 times, the sedimentation mass fraction of unclassified tailings at the bottom of vertical sand silo is up to 64%, the solid particle content of waste water meets the national standard, and the side influences of NPA can be removed by the addition of fly ash. The industrial test result shows that the system, the addition manner and the equipments are rational, and the vertical sand silo is used efficiently. This developed system is simple with large throughput, and the processing cost is 2.2 yuan(RMB)/m3, only 10%-20% of that by mechanical settlement.展开更多
A uniaxial viscoelastoplastic model that can describe whole creep behaviors of asphalt sand at different temperatures was presented.The model was composed of three submodels in series,which describe elastoplastic,visc...A uniaxial viscoelastoplastic model that can describe whole creep behaviors of asphalt sand at different temperatures was presented.The model was composed of three submodels in series,which describe elastoplastic,viscoelastic and viscoplastic characteristics respectively.The constitutive equation was established for uniaxial loading condition,and the creep representation was also obtained.The constitutive parameters were determined by uniaxial compression tests under controlled-stress of 0.1 MPa with five different test temperatures of 20,40,45,50 and 60 ℃.Expressions of the model parameters in terms of temperatures were also given.The model gave prediction at various temperatures consistent with the experimental results,and can reflect the total deformation characterization of asphalt sands.展开更多
Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(C...Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(CRB)and cemented gobi sand backfill(CGB),were prepared and cured at various temperatures(20,40,60℃)and ages(3,7,28 d),and the effects of temperature and age on the physico-mechanical properties of CRB and CGB were investigated based on laboratory tests.Results show that:1)the effects of temperature and age on the physico-mechanical properties of backfills mainly depend on the amount of hydration products and the refinement of cementation structures.The temperature has a more significant effect on thermal expansibility and ultrasonic performance at early ages.2)The facilitating effect of temperature and age on the compressive strength of CGB is higher than that on CRB.With the increase of temperature,the compressive failure modes changed from X-conjugate shear failure to tensile failure,and the integrity of specimens was significantly improved.3)Similarly,the shear performance of CGB is generally better than that of CRB.The temperature has a weaker effect on shear strength than age,but the shear deformation and shear plane morphology are closely related to temperature.展开更多
The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sand...The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.展开更多
Traditional soil additives like Portland cement and lime are prone to cause the brittle fracture behavior of soil,and possibly,environmental impacts.This study explores the potential use of polyurethane organic polyme...Traditional soil additives like Portland cement and lime are prone to cause the brittle fracture behavior of soil,and possibly,environmental impacts.This study explores the potential use of polyurethane organic polymer and sisal fiber in improving the mechanical performance of sand.The effects of polymer content,fiber content,and dry density on the unconfined compressive strength(UCS)and direct tensile strength(DTS)of the polymer-fiber-sand composite were evaluated.The results showed significant increase in UCS and DTS of the reinforced sand with the increase of polymer content,fiber content,and dry density.At high dry density condition,a single peaked stress−strain curve is often observed.Higher polymer content is beneficial to increasing the peak stress,while higher fiber content contributes more to the post-peak stress.The combined use of polymers and fibers in soil reinforcement effectively prevents the propagation and development of cracks under the stress.Scanning electron microscopy(SEM)test was also performed to investigate the micro-structural changes and inter-particle relations.It was found through SEM images that the surface coating,bonding,and filling effects conferred by polymer matrix greatly enhance the interfacial interactions,and hence provide a cohesive environment where the strength of fibers could be readily mobilized.展开更多
Laboratory swelling deformation tests were carried out on compacted GMZ bentonite and bentonite-sand mixtures with 30%and 50%sand contents at 20,40,60,80 and 90°C with infiltration of distilled water.Influence of...Laboratory swelling deformation tests were carried out on compacted GMZ bentonite and bentonite-sand mixtures with 30%and 50%sand contents at 20,40,60,80 and 90°C with infiltration of distilled water.Influence of temperature,initial dry density,and quartz sand content on the swelling deformation characteristic of compacted bentonite specimens was analyzed.Results indicate that the swelling deformation process is accelerated,and the maximum swelling strain increases with the increase in temperature,while the maximum swelling strain tends to be stable with increasing temperature.In the meantime,the temperature effects depend on both of the sand content and the initial dry density of the specimens,the increases of the maximum swelling strain induced by increasing temperature,are enlarged by increasing sand content or initial dry density.Adding of quartz sand to bentonite not only influences the integrality of bentonite specimen,but also increase the microfissuring in area on quartz sand,which are advantageous to the heat transfer,leading to the increase of swelling deformation capacity of the specimen.The increased dry density relatively increases the bentonite content,so the swelling property is enhanced.However,no change on mineral composition of bentonite was observed when temperature was changed from 20 to 90°C.展开更多
The anisotropy effect is one of the most prominent phenomena in soil mechanics. Although many experimental programs have investigated anisotropy in sand, a computational procedure for determining anisotropy is lacking...The anisotropy effect is one of the most prominent phenomena in soil mechanics. Although many experimental programs have investigated anisotropy in sand, a computational procedure for determining anisotropy is lacking. Thus, this work aims to develop a procedure for connecting the sand friction angle and the loading orientation. All principal stress rotation tests in the literatures were processed via an artificial neural network. Then, with sensitivity analysis, the effect of intrinsic soil properties,consolidation history, and test sample characteristics on enhancing anisotropy was examined. The results imply that decreasing the grain size of the soil increases the effect of anisotropy on soil shear strength. In addition, increasing the angularity of grains increases the anisotropy effect in the sample. The stability of a sandy slope was also examined by considering the anisotropy in shear strength parameters. If the anisotropy effect is neglected, slope safety is overestimated by 5%-25%. This deviation is more apparent in flatter slopes than in steeper ones. However, the critical slip surface in the most slopes is the same in isotropic and anisotropic conditions.展开更多
The predictive capacity of numerical analyses in geotechnical engineering depends strongly on the efficiency of constitutive models used for modeling of interfaces behavior.Interfaces are considered as thin layers of ...The predictive capacity of numerical analyses in geotechnical engineering depends strongly on the efficiency of constitutive models used for modeling of interfaces behavior.Interfaces are considered as thin layers of the soil adjacent to structures boundary whose major role is transferring loads from structures to soil masses.An interface model within the bounding surface plasticity framework and the critical state soil mechanics is presented.To this aim,general formulation of the interface model according to the bounding surface plasticity theory is described first.Similar to granular soils,it has been shown that the mechanical behavior of sand-structure interfaces is highly affected by the interface state that is the combined influences of density and applied normal stress.Therefore,several ingredients of the model are directly related to the interface state.As a result of this feature,the model is enabled to distinguish interfaces in dense state from those in loose state and to provide realistic predictions over wide ranges of density and normal stress values.In evaluation of the model,a reasonable correspondence between the model predictions and the experimental data of various research teams is found.展开更多
基金Projects(51878103,52208370)supported by the National Natural Science Foundation of ChinaProject(cstc2020jcyjcxtt X0003)supported by the Innovation Group Science Foundation of the Natural Science Foundation of Chongqing,ChinaProject(2022CDJQY-012)supported by the Fundamental Research Funds for the Central Universities,China。
文摘To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundations under a strip footing,from macro to micro scales.The results demonstrate that the bearing characteristics of coral sand slope foundations can be successfully modeled by utilizing breakable corner particles in simulations.The dual effects of interlocking and breakage of corners well explained the specific shallower load transmission and narrower shear stress zones in breakable corner particle slopes.Additionally,the study revealed the significant influence of breakable corners on soil behaviors on slopes.Furthermore,progressive corner breakage within slip bands was successfully identified as the underling mechanism in determining the unique bearing characteristics and the distinct failure patterns of breakable corner particle slopes.This study provides a new perspective to clarify the behaviors of slope foundations composed of breakable corner particle materials.
基金Project(U2268213) supported by the National Natural Science Foundation of ChinaProject(2024YFHZ0121) supported by the Sichuan Science and Technology Program,China。
文摘Transparent sand is a special material to realize visualization of concealed work in geotechnical engineering. To investigate the dynamic characteristics of transparent sand, a series of undrained cyclic simple shear tests were conducted on the saturated transparent sand composed of fused quartz and refractive index-matched oil mixture. The results reveal that an increase in the initial shear stress ratio significantly affects the shape of the hysteresis loop, particularly resulting in more pronounced asymmetrical accumulation. Factors such as lower relative density, higher cyclic stress ratios and higher initial shear stress ratio have been shown to accelerate cyclic deformation, cyclic pore water pressure and stiffness degradation. The cyclic liquefaction resistance curves decrease as the initial shear stress ratio increases or as relative density decreases. Booker model and power law function model were applied to predict the pore water pressure for transparent sand. Both models yielded excellent fits for their respective condition, indicating a similar dynamic liquefaction pattern to that of natural sands. Finally, transparent sand displays similar dynamic characteristics in terms of cyclic liquefaction resistance and Kα correction factor. These comparisons indicate that transparent sand can serve as an effective means to mimic many natural sands in dynamic model tests.
基金Project(2021YFC2900600)supported by the Young Scientist Project of National Key Research and Development Program of ChinaProject(52074166)supported by the National Natural Science Foundation of China+1 种基金Projects(ZR2021YQ38,ZR2020QE121)supported by the Natural Science Foundation of Shandong Province,ChinaProject(2022KJ101)supported by the Science and Technology Support Plan for Youth Innovation of Colleges and Universities in Shandong Province,China。
文摘In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.Such defects are identified as crucial contributors to the failure and instability of the surrounding rock,subsequently impacting the engineering stability.The study aimed to investigate the impact of fracture geometry and confining pressure on the deformation,failure characteristics,and strength of specimens using sand powder 3D printing technology and conventional triaxial compression tests.The results indicate that the number of fractures present considerably influences the peak strength,axial peak strain and elastic modulus of the specimens.Confining pressure is an important factor affecting the failure pattern of the specimen,under which the specimen is more prone to shear failure,but the initiation,expansion and penetration processes of secondary cracks in different fracture specimens are different.This study confirmed the feasibility of using sand powder 3D printing specimens as soft rock analogs for triaxial compression research.The insights from this research are deemed essential for a deeper understanding of the mechanical behavior of fractured surrounding rocks when under triaxial stress state.
基金funded by the National Natural Science Foundation of China(Grant No.12072371)Jiangsu Natural Science Foundation(Grant No.BK20221528)。
文摘To explore the penetration resistance of calcareous sand media,penetration tests have been conducted in the velocity range of 200-1000 m/s using conical-nosed projectiles with a diameter of 14.5 mm.Further,a pseudo fluid penetration model applicable to the penetration of rigid projectiles in sand media is established according to the approximate flow of compacted sand in the adjacent zone of penetration.The correlation between the impedance function of projectile-target interaction and the internal friction features of pseudo fluid is clarified,and the effects of sand density,cone angle of nose-shaped projectile,and dynamic hardness on the penetration depth are investigated.The results verify the feasibility,wide applicability,and much lower error(with respect to the experimental data)of the proposed model as compared to the Slepyan hydrodynamic model.
基金Project(51108190) supported by the National Natural Science Foundation of ChinaProject(2012ZC27) supported by the Independence Research Subject from State Key Laboratory of Subtropical Building Science,ChinaProject(GTCC 2008-253) supported by the Research Subject from Guangzhou City,China
文摘Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale model test of sand-flow method. The real-time data of sand-deposit height and radius were obtained by the self-developed sand-deposit detectors. The test results show that the detecting method is simple and has high precision. In the use of sand-flow method, the sand-carrying capability of fluid is limited, and sand particles are all transported to the sand-deposit periphery through crater, gap and chutes after the sand deposit formed. The diffusion range of the particles outside the sand-deposit does not exceed 2.0 m. Severe sorting of sand particles is not observed because of the unique oblique-layered depositing process. The temporal and spatial distributions of gap and chutes directly affect the sand-deposit expansion, and the expansion trend of the average sand-deposit radius accords with quadratic time-history curve.
文摘High-speed train running in the sand environment is different from the general environment. In the former situation, there will be sand load applied on high-speed train(SLAHT) caused by sand particles hitting train surface. This will have a great impact on the train stability, running drag and surface corrosion. Numerical simulation method of SLAHT in sand environment is studied. The velocity and mass flow rate models of saltation and suspension sand particles and the calculation model of SLAHT caused by sand particles hitting train surface are established. The discrete phase method is adopted for numerical simulating the process of saltation and suspension sand particles moving to train surface and generating sand load. By comparison with the field tests, the numerical simulation reliability is analysed. The theoretical formula of SLAHT changing with cross-wind and train speed is proposed. SLAHT changing law is analyzed. Research results indicate that SLAHT changing with cross-wind and train speed is a quadratic relationship. When train speed is constant, SLAHT increases quadratically with cross-wind speed improvement. When cross-wind speed is constant, SLAHT increases quadratically with train speed improvement.
基金Projects(51004082,51222406)supported by the National Natural Science Foundation of ChinaProject(NCET-12-1061)supported by the New Century Excellent Talents in University of ChinaProjects(12TD007,2011JQ0020)supported by Scientific Research Innovation Team Project of Sichuan and the Sichuan Youth Sci-tech Fund,China
文摘In the view of the problems existing in horizontal well,such as sand depositing and cleaning difficulty of borehole,a technology with rotating jet suitable to resolution of the problems was presented.Based on liquid solid two-phase flow theory,the analyses on the sand movement law and the swirling field influential factors were conducted.Results show that:1) With the increasing of displacement in horizontal section annulus,swirling field strength increases,and when the displacement is constant,the closer from the nozzle,the stronger the swirling field strength is;2) Head rotating speed and liquid viscosity have little influence on the swirling field strength,but the sand-carrying rate of fluid can increase by increasing liquid viscosity in a certain range;3) Rotating the string and reducing its eccentricity in annulus are conducive for sand migration in the annulus;4) The sand can be suspended and accelerated again and the swirling field strength is enhanced by the helix agitator.Hence,the research results provide the theoretical basis for the design and application of rotating jet tool.
基金Project(2006BAB02A03) supported by National Key Technology Research and Development ProgramProject(2006BA02B05) supported by Key Programs for Science and Technology Development of China during the 11th Five Year
文摘A new technology characterized by rapidly non-mechanical settlement of unclassified tailings was developed based on a large number of tests, and dynamic settlement and continual slurry preparation without hardening in vertical sand silo were eventually realized by the addition of an effective flocculating agent (NPA). The results show that the sedimentation velocity of interface between unclassified tailings and water after the addition of NPA increases by 10-20 times, the sedimentation mass fraction of unclassified tailings at the bottom of vertical sand silo is up to 64%, the solid particle content of waste water meets the national standard, and the side influences of NPA can be removed by the addition of fly ash. The industrial test result shows that the system, the addition manner and the equipments are rational, and the vertical sand silo is used efficiently. This developed system is simple with large throughput, and the processing cost is 2.2 yuan(RMB)/m3, only 10%-20% of that by mechanical settlement.
基金Project(10672063) supported by the National Natural Science Foundation of China
文摘A uniaxial viscoelastoplastic model that can describe whole creep behaviors of asphalt sand at different temperatures was presented.The model was composed of three submodels in series,which describe elastoplastic,viscoelastic and viscoplastic characteristics respectively.The constitutive equation was established for uniaxial loading condition,and the creep representation was also obtained.The constitutive parameters were determined by uniaxial compression tests under controlled-stress of 0.1 MPa with five different test temperatures of 20,40,45,50 and 60 ℃.Expressions of the model parameters in terms of temperatures were also given.The model gave prediction at various temperatures consistent with the experimental results,and can reflect the total deformation characterization of asphalt sands.
基金Project(P2018G045)supported by the Science&Technology Research and Development Program of China RailwayProject(2018CFA013)supported by the Hubei Provincial Natural Science Foundation Innovation Group,China+1 种基金Project(KFJ-STS-QYZD-174)supported by the Science and Technology Service Network Initiative of the Chinese Academy of SciencesProject(51709257)supported by the National Natural Science Foundation of China。
文摘Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(CRB)and cemented gobi sand backfill(CGB),were prepared and cured at various temperatures(20,40,60℃)and ages(3,7,28 d),and the effects of temperature and age on the physico-mechanical properties of CRB and CGB were investigated based on laboratory tests.Results show that:1)the effects of temperature and age on the physico-mechanical properties of backfills mainly depend on the amount of hydration products and the refinement of cementation structures.The temperature has a more significant effect on thermal expansibility and ultrasonic performance at early ages.2)The facilitating effect of temperature and age on the compressive strength of CGB is higher than that on CRB.With the increase of temperature,the compressive failure modes changed from X-conjugate shear failure to tensile failure,and the integrity of specimens was significantly improved.3)Similarly,the shear performance of CGB is generally better than that of CRB.The temperature has a weaker effect on shear strength than age,but the shear deformation and shear plane morphology are closely related to temperature.
基金Project (2007CB714006) supported by the National Basic Research Program of China
文摘The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.
基金Project(41877212)supported by the National Natural Science Foundation of ChinaProject(2017010)supported by the Water Conservancy Science and Technology Project of Jiangsu Province,ChinaProject(B200202013)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Traditional soil additives like Portland cement and lime are prone to cause the brittle fracture behavior of soil,and possibly,environmental impacts.This study explores the potential use of polyurethane organic polymer and sisal fiber in improving the mechanical performance of sand.The effects of polymer content,fiber content,and dry density on the unconfined compressive strength(UCS)and direct tensile strength(DTS)of the polymer-fiber-sand composite were evaluated.The results showed significant increase in UCS and DTS of the reinforced sand with the increase of polymer content,fiber content,and dry density.At high dry density condition,a single peaked stress−strain curve is often observed.Higher polymer content is beneficial to increasing the peak stress,while higher fiber content contributes more to the post-peak stress.The combined use of polymers and fibers in soil reinforcement effectively prevents the propagation and development of cracks under the stress.Scanning electron microscopy(SEM)test was also performed to investigate the micro-structural changes and inter-particle relations.It was found through SEM images that the surface coating,bonding,and filling effects conferred by polymer matrix greatly enhance the interfacial interactions,and hence provide a cohesive environment where the strength of fibers could be readily mobilized.
基金Project (41402260) supported by the National Natural Science Foundation of ChinaProject (20136101120006) supported by the Research Fund for the Doctoral Program of Higher Education,China
文摘Laboratory swelling deformation tests were carried out on compacted GMZ bentonite and bentonite-sand mixtures with 30%and 50%sand contents at 20,40,60,80 and 90°C with infiltration of distilled water.Influence of temperature,initial dry density,and quartz sand content on the swelling deformation characteristic of compacted bentonite specimens was analyzed.Results indicate that the swelling deformation process is accelerated,and the maximum swelling strain increases with the increase in temperature,while the maximum swelling strain tends to be stable with increasing temperature.In the meantime,the temperature effects depend on both of the sand content and the initial dry density of the specimens,the increases of the maximum swelling strain induced by increasing temperature,are enlarged by increasing sand content or initial dry density.Adding of quartz sand to bentonite not only influences the integrality of bentonite specimen,but also increase the microfissuring in area on quartz sand,which are advantageous to the heat transfer,leading to the increase of swelling deformation capacity of the specimen.The increased dry density relatively increases the bentonite content,so the swelling property is enhanced.However,no change on mineral composition of bentonite was observed when temperature was changed from 20 to 90°C.
文摘The anisotropy effect is one of the most prominent phenomena in soil mechanics. Although many experimental programs have investigated anisotropy in sand, a computational procedure for determining anisotropy is lacking. Thus, this work aims to develop a procedure for connecting the sand friction angle and the loading orientation. All principal stress rotation tests in the literatures were processed via an artificial neural network. Then, with sensitivity analysis, the effect of intrinsic soil properties,consolidation history, and test sample characteristics on enhancing anisotropy was examined. The results imply that decreasing the grain size of the soil increases the effect of anisotropy on soil shear strength. In addition, increasing the angularity of grains increases the anisotropy effect in the sample. The stability of a sandy slope was also examined by considering the anisotropy in shear strength parameters. If the anisotropy effect is neglected, slope safety is overestimated by 5%-25%. This deviation is more apparent in flatter slopes than in steeper ones. However, the critical slip surface in the most slopes is the same in isotropic and anisotropic conditions.
文摘The predictive capacity of numerical analyses in geotechnical engineering depends strongly on the efficiency of constitutive models used for modeling of interfaces behavior.Interfaces are considered as thin layers of the soil adjacent to structures boundary whose major role is transferring loads from structures to soil masses.An interface model within the bounding surface plasticity framework and the critical state soil mechanics is presented.To this aim,general formulation of the interface model according to the bounding surface plasticity theory is described first.Similar to granular soils,it has been shown that the mechanical behavior of sand-structure interfaces is highly affected by the interface state that is the combined influences of density and applied normal stress.Therefore,several ingredients of the model are directly related to the interface state.As a result of this feature,the model is enabled to distinguish interfaces in dense state from those in loose state and to provide realistic predictions over wide ranges of density and normal stress values.In evaluation of the model,a reasonable correspondence between the model predictions and the experimental data of various research teams is found.