In this investigation,we examined the high-temperature corrosion behavior of three nickel-based single-crystal superalloys subjected to a mixed molten salt environment of Na_(2)SO_(4)and NaCl at 700℃,leading to a pre...In this investigation,we examined the high-temperature corrosion behavior of three nickel-based single-crystal superalloys subjected to a mixed molten salt environment of Na_(2)SO_(4)and NaCl at 700℃,leading to a preliminary elucidation of their molten salt corrosion mechanisms.By further comparing the corrosion degree of the three nickel-based single-crystal superalloys combined with the Gibbs free energy calculation of the corrosion products,the influence of alloying elements on the corrosion performance of nickel-based single-crystal superalloys was analyzed.It was established that the corrosion mechanism of these nickel-based single-crystal superalloys predominantly involves a cyclic process of oxide layer formation and decomposition,ultimately resulting in the establishment of a protective layer principally composed of NiO,with a constantly regenerating Al2O3 barrier,impeding further alloy degradation.Furthermore,the inclusion of elements such as Cr,Al,Ta,and notably Re has been found to markedly improve the thermal corrosion resistance of the superalloys.These insights not only enhance our comprehension of the corrosion mechanisms pertinent to nickel-based superalloys,but also provide strategic directions for alloy composition refinement aimed at bolstering their corrosion resilience.展开更多
Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structu...Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models.展开更多
Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and ...Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and SEM-EDX. The hydrophilic organic salts with different properties were introduced into activated carbon and significantly affected the properties of the samples.During adsorption experiments, the water vapor adsorption amount in modified samples increases by 0.57-17.12 times in temperature range from 303 to 323 K and at relative pressure below 0.50. Water molecules combined with surface hydrophilic groups through H-bonding exhibit good thermo stability. The effects of temperature, oxygen content and properties of the hydrophilic organic salts on water vapor adsorption were studied. It is indicated that water vapor adsorption in modified samples is mainly affected by the surface oxygen content. The carboxylate radicals in the hydrophilic organic salts greatly affect the micropore structure of the modified samples, while the metal ions in them exhibit limited influence. Different adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.展开更多
Salt weathering leads to destruction of many valuable cultural heritage monuments and porous building material. The present study aims at providing more laboratory evidence for evaluating the effects of salt precipita...Salt weathering leads to destruction of many valuable cultural heritage monuments and porous building material. The present study aims at providing more laboratory evidence for evaluating the effects of salt precipitation on the deterioration process. In view of this, the remoulded soil specimens were mixed with three kinds of salts(i.e., NaCl, Na_2SO_4 and their mixture) with different salt concentrations, and the specimens were kept in environment cabinet for undergoing different wet-dry cycles. After each cycle, the ultrasound velocity measurements were employed to monitor the deterioration process. For the specimens that have suffered three wet-dry cycles, the mechanical properties(i.e. shear strength and compression strength) were determined to evaluate the degree of deterioration. Furthermore, considering the realistic conservation environment of earthen sites, mechanical stability of these specimens against sediment-carrying wind erosion was conducted in a wind tunnel. These experiments results indicate that the overall average velocities of the specimens after the third cycle are significantly lower than those subjected to only one cycle. Ultrasound velocity, mechanical strength and wind erosion rate decrease when salt content increases. However, the internal friction angle increases firstly, and then decreases with the increase in salt content added to the specimens. Na_2SO_4 contributes most of the surface deterioration, while NaCl plays little role in the deterioration. The damage potential of the salt mixture is less obvious and largely dependent on the crystallisation location.展开更多
The electrokinetic properties and flotation of diaspore, kaolinite, pyrophyllite and illite with quaternary ammonium salts collectors were studied. The results of flotation tests show that the collecting ability of qu...The electrokinetic properties and flotation of diaspore, kaolinite, pyrophyllite and illite with quaternary ammonium salts collectors were studied. The results of flotation tests show that the collecting ability of quaternary ammonium salts for the four minerals is in the order(from strong to weak) ofoctadecyl dimethyl benzyl ammonium chloride(ODBA), cetyl trimethyl ammonium bromide(CTAB), dodecyl trimethyl ammonium chloride(DTAC). Under the condition of alkalescence, it is possible to separate the diaspore from the silicate minerals such as kaolinite, illite and pyrophyllite using quaternary ammonium salts as collector. Isoelectric points (IEP) of diaspore, kaolinite, pyrophyllite and illite are pH=6.0, 3.4, 2.3 and 3.2, respectively. Quaternary ammonium salts can change ζ-potential of the aluminosilicate minerals obviously. The flotation mechanisms were explained by ζ-potential and Fourier transform infrared spectrum (FT-IR) measurements. The results demonstrate that only electrostatic interaction takes place between aluminosilicate minerals (diaspore, kaolinite, pyrophyllite and illite) and quaternary ammonium salts.展开更多
The structures, infrared spectra and cation stability of seven 5,5′-azotetrazolate nonmetallic salts are investigated by using B3LYP method with 6-311+G (d) basis set. The salts are guanidinium (GZT), aminoguanidiniu...The structures, infrared spectra and cation stability of seven 5,5′-azotetrazolate nonmetallic salts are investigated by using B3LYP method with 6-311+G (d) basis set. The salts are guanidinium (GZT), aminoguanidinium (AGZT), diaminoguanidinium (DAGZT), triaminoguanidinium (TAGZT), azidoformamidinium (AFZT), ammonium (AZT), and hydrazinium (HZT), respectively. The calculated results indicate that the carbon and nitrogen atoms of the cations in seven nonmetallic salts are characterized to be sp2 hybrid atoms, and the ranges of characteristic absorption peaks in IR spectra of the seven nonmetallic salts are approximative consistent. All their cations are stable and their stabilities decrease with the increase in their nitrogen contents.展开更多
In this study,the catalysis function of Na_(2)CO_(3) to the structural properties of xylan char was well investigated with Na_(2)CO_(3) on,and the electrochemical performance of xylan char as an anode material for sod...In this study,the catalysis function of Na_(2)CO_(3) to the structural properties of xylan char was well investigated with Na_(2)CO_(3) on,and the electrochemical performance of xylan char as an anode material for sodium-ion batteries was tested.The characterization of X-ray microscopy and scanning electron microscopy demonstrated that the morphological structure of xylan char was altered due to the addition of Na_(2)CO_(3) catalyst.The increasement of the Na_(2)CO_(3)/xylan ratio resulted in a slenderization of the triangular prism shape of the char skeleton and a reduction in porosity.X-ray diffraction analysis revealed that Na_(2)CO_(3) promoted the growth of the(004)crystal plane of graphite during xylan pyrolysis,while inhibiting the formation of the(100/101)crystal planes.Raman spectroscopy analysis indicated that the presence of Na_(2)CO_(3)had changed the graphitization degree of xylan char.Electrochemical tests further showed that char prepared with a Na_(2)CO_(3)/xylan mass ratio of 1∶1 exhibited the highest sodium storage capacity.This study provides a pathway for the rational design carbon materials derived from xylan for future applications in energy storage devices.展开更多
Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS...Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS parametric modeling technology is used to construct its three-dimensional geometric model,and geometric simplification is carried out.Two surface treatment processes,HK-35 zinc nickel alloy electroplating and pure zinc electroplating,were designed,and the influence of different coatings on the mechanical properties of steering knuckles was compared and analyzed through numerical simulation.At the same time,standard specimens were prepared for salt spray corrosion testing and scratch method combined strength testing to verify the numerical simulation results.The results showed that under emergency braking and composite working conditions,the peak Von Mises stress of the zinc nickel alloy coating was 119.85 MPa,which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Its equivalent strain value was 652×10^(-6),which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Experimental data confirms that zinc nickel alloy coatings exhibit significant advantages in stress distribution uniformity,strain performance,and load-bearing capacity in high stress zones.The salt spray corrosion test further indicates that the coating has superior corrosion resistance and coating substrate interface bonding strength,which can significantly improve the mechanical stability and long-term reliability of automotive precision electroplating mechanical structures.展开更多
As by-products of petroleum refining,heavy oils are characterized by a high carbon content,low cost and great variability,making them competitive precursors for the anodes of potassium ion batteries(PIBs).However,the ...As by-products of petroleum refining,heavy oils are characterized by a high carbon content,low cost and great variability,making them competitive precursors for the anodes of potassium ion batteries(PIBs).However,the relationship between heavy oil composition and potassium storage performance remains unclear.Using heavy oils containing distinct chemical groups as the carbon source,namely fluid catalytic cracking slurry(FCCS),petroleum asphalt(PA)and deoiled asphalt(DOA),three carbon nanosheets(CNS)were prepared through a molten salt method,and used as the anodes for PIBs.The composition of the heavy oil determines the lamellar thicknesses,sp^(3)-C/sp^(2)-C ratio and defect concentration,thereby affecting the potassium storage performance.The high content of aromatic hydrocarbons and moderate amount of heavy component moieties in FCCS produce carbon nanosheets(CNS-FCCS)that have a smaller layer thickness,larger interlayer spacing(0.372 nm),and increased number of folds than in CNS derived from the other three precursors.These features give it faster charge/ion transfer,more potassium storage sites and better reaction kinetics.CNS-FCCS has a remarkable K^(+)storage capacity(248.7 mAh g^(-1) after 100 cycles at 0.1 A g^(-1)),long cycle lifespan(190.8 mAh g^(-1) after 800 cycles at 1.0 A g^(-1))and excellent rate capability,ranking it among the best materials for this application.This work sheds light on the influence of heavy oil composition on carbon structure and electrochemical performance,and provides guidance for the design and development of advanced heavy oil-derived carbon electrodes for PIBs.展开更多
This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction betwee...This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.展开更多
Developing supercapacitors(SCs)with long cycling life and wide operative voltage window is a significant topic in the field of aqueous electrolytes.Although the design of water in salt(WIS)electrolytes has pushed the ...Developing supercapacitors(SCs)with long cycling life and wide operative voltage window is a significant topic in the field of aqueous electrolytes.Although the design of water in salt(WIS)electrolytes has pushed the development of aqueous electrolytes to a new height,the WIS electrolytes with an operative voltage window of up to 2.5 V is still very scarce.Herein,in order to enrich the type of aqueous electrolyte with high operative voltage,tetramethylammonium trifluoromethanesulfonate(TMAOTf)based WIS electrolyte was used as a model to construct WIS based hybrid electrolyte with acetonitrile(ACN)co-solvent and LiTFSI co-solute.In view of the coordination effect of ACN and Lit on free water in TMAOTf based WIS electrolyte,the TMAt-Lit-AWIS electrolyte has the electrochemical stabilization window of up to 3.35 V.Further coupled with the commercial YP-50F electrodes,TMAt-Lit-AWIS based SCs exhibited wide operative voltage window(2.5 V),long cycling life(45,000 cycles)and good low-temperature performance(99.99%capacitance retention after 2000 cycles at20℃).The design of this hybrid electrolyte will enrich the types of aqueous hybrid electrolytes with long cycling life and wide operative voltage window.展开更多
Aryl-2,2′-bipyridine was obtained by means of the annulation reaction of ammonia and the addition product of each of β-arylvinamidinium salts with 2-acetyl pyridine. The annulation reaction was dependent on the natu...Aryl-2,2′-bipyridine was obtained by means of the annulation reaction of ammonia and the addition product of each of β-arylvinamidinium salts with 2-acetyl pyridine. The annulation reaction was dependent on the nature of the substituent at the β-position of the vinamidinium species.展开更多
硅橡胶复合绝缘子的憎水性迁移特性使其污层具有憎水性,污层中盐分的溶出和流失过程都变得复杂。绝缘子的污闪特性与表面污层受潮时溶解并参与导电的盐分紧密相关,对有效附盐密度(effective equivalent salt deposit density,EESDD,标...硅橡胶复合绝缘子的憎水性迁移特性使其污层具有憎水性,污层中盐分的溶出和流失过程都变得复杂。绝缘子的污闪特性与表面污层受潮时溶解并参与导电的盐分紧密相关,对有效附盐密度(effective equivalent salt deposit density,EESDD,标记为ρEESDD)进行了更深入的研究。用溶出盐密减去流失盐密来表征有效附盐密度,通过试验研究了憎水性迁移时间和绝缘子表面灰密对ρEESDD的影响,以及自然积污绝缘子受潮过程中的ρEESDD。结果发现:绝缘子受潮时ρEESDD先增大后减小,最终趋于稳定;污层憎水性导致受潮时有效附盐密度的变化过程持续时间更长;灰密的增大会导致有效附盐密度的最大值更晚出现;自然积污绝缘子ρEESDD的最大值仅为污层总等值盐密的15%,说明较低的等值盐密也是复合绝缘子污闪电压高的原因之一。展开更多
基金Project(2022QNRC001) supported by the Young Elite Scientists Sponsorship Program by China Association for Science and TechnologyProject supported by the State Key Laboratory of Powder Metallurgy,China。
文摘In this investigation,we examined the high-temperature corrosion behavior of three nickel-based single-crystal superalloys subjected to a mixed molten salt environment of Na_(2)SO_(4)and NaCl at 700℃,leading to a preliminary elucidation of their molten salt corrosion mechanisms.By further comparing the corrosion degree of the three nickel-based single-crystal superalloys combined with the Gibbs free energy calculation of the corrosion products,the influence of alloying elements on the corrosion performance of nickel-based single-crystal superalloys was analyzed.It was established that the corrosion mechanism of these nickel-based single-crystal superalloys predominantly involves a cyclic process of oxide layer formation and decomposition,ultimately resulting in the establishment of a protective layer principally composed of NiO,with a constantly regenerating Al2O3 barrier,impeding further alloy degradation.Furthermore,the inclusion of elements such as Cr,Al,Ta,and notably Re has been found to markedly improve the thermal corrosion resistance of the superalloys.These insights not only enhance our comprehension of the corrosion mechanisms pertinent to nickel-based superalloys,but also provide strategic directions for alloy composition refinement aimed at bolstering their corrosion resilience.
基金the research committee at Malek Ashtar University of Technology (MUT) for their invaluable support of this project
文摘Recent advancements have led to the synthesis of various new metal-containing explosives,particularly energetic metal-organic frameworks(EMOFs),which feature high-energy ligands within well-ordered crystalline structures.These explosives exhibit significant advantages over traditional compounds,including higher density,greater heats of detonation,improved mechanical hardness,and excellent thermal stability.To effectively evaluate their detonation performance,it is crucial to have a reliable method for predicting detonation heat,velocity,and pressure.This study leverages experimental data and outputs from the leading commercial computer code to identify suitable decomposition pathways for different metal oxides,facilitating straightforward calculations for the detonation performance of alkali metal salts,and metal coordination compounds,along with EMOFs.The new model enhances predictive reliability for detonation velocities,aligning more closely with experimental results,as evi-denced by a root mean square error(RMSE)of 0.68 km/s compared to 1.12 km/s for existing methods.Furthermore,it accommodates a broader range of compounds,including those containing Sr,Cd,and Ag,and provides predictions for EMOFs that are more consistent with computer code outputs than previous predictive models.
基金Projects(21376274,51206192)supported by the National Natural Science Foundation of China
文摘Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and SEM-EDX. The hydrophilic organic salts with different properties were introduced into activated carbon and significantly affected the properties of the samples.During adsorption experiments, the water vapor adsorption amount in modified samples increases by 0.57-17.12 times in temperature range from 303 to 323 K and at relative pressure below 0.50. Water molecules combined with surface hydrophilic groups through H-bonding exhibit good thermo stability. The effects of temperature, oxygen content and properties of the hydrophilic organic salts on water vapor adsorption were studied. It is indicated that water vapor adsorption in modified samples is mainly affected by the surface oxygen content. The carboxylate radicals in the hydrophilic organic salts greatly affect the micropore structure of the modified samples, while the metal ions in them exhibit limited influence. Different adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.
基金Projects(2010BAK67B16,2013BAK08B11,2014BAK16B02)supported by the National Science and Technology Support Program of China during the 12th Five-year Plan Period
文摘Salt weathering leads to destruction of many valuable cultural heritage monuments and porous building material. The present study aims at providing more laboratory evidence for evaluating the effects of salt precipitation on the deterioration process. In view of this, the remoulded soil specimens were mixed with three kinds of salts(i.e., NaCl, Na_2SO_4 and their mixture) with different salt concentrations, and the specimens were kept in environment cabinet for undergoing different wet-dry cycles. After each cycle, the ultrasound velocity measurements were employed to monitor the deterioration process. For the specimens that have suffered three wet-dry cycles, the mechanical properties(i.e. shear strength and compression strength) were determined to evaluate the degree of deterioration. Furthermore, considering the realistic conservation environment of earthen sites, mechanical stability of these specimens against sediment-carrying wind erosion was conducted in a wind tunnel. These experiments results indicate that the overall average velocities of the specimens after the third cycle are significantly lower than those subjected to only one cycle. Ultrasound velocity, mechanical strength and wind erosion rate decrease when salt content increases. However, the internal friction angle increases firstly, and then decreases with the increase in salt content added to the specimens. Na_2SO_4 contributes most of the surface deterioration, while NaCl plays little role in the deterioration. The damage potential of the salt mixture is less obvious and largely dependent on the crystallisation location.
基金Project(2005CB623701) supported by the National Key Fundamental Research and Development Program of China
文摘The electrokinetic properties and flotation of diaspore, kaolinite, pyrophyllite and illite with quaternary ammonium salts collectors were studied. The results of flotation tests show that the collecting ability of quaternary ammonium salts for the four minerals is in the order(from strong to weak) ofoctadecyl dimethyl benzyl ammonium chloride(ODBA), cetyl trimethyl ammonium bromide(CTAB), dodecyl trimethyl ammonium chloride(DTAC). Under the condition of alkalescence, it is possible to separate the diaspore from the silicate minerals such as kaolinite, illite and pyrophyllite using quaternary ammonium salts as collector. Isoelectric points (IEP) of diaspore, kaolinite, pyrophyllite and illite are pH=6.0, 3.4, 2.3 and 3.2, respectively. Quaternary ammonium salts can change ζ-potential of the aluminosilicate minerals obviously. The flotation mechanisms were explained by ζ-potential and Fourier transform infrared spectrum (FT-IR) measurements. The results demonstrate that only electrostatic interaction takes place between aluminosilicate minerals (diaspore, kaolinite, pyrophyllite and illite) and quaternary ammonium salts.
文摘The structures, infrared spectra and cation stability of seven 5,5′-azotetrazolate nonmetallic salts are investigated by using B3LYP method with 6-311+G (d) basis set. The salts are guanidinium (GZT), aminoguanidinium (AGZT), diaminoguanidinium (DAGZT), triaminoguanidinium (TAGZT), azidoformamidinium (AFZT), ammonium (AZT), and hydrazinium (HZT), respectively. The calculated results indicate that the carbon and nitrogen atoms of the cations in seven nonmetallic salts are characterized to be sp2 hybrid atoms, and the ranges of characteristic absorption peaks in IR spectra of the seven nonmetallic salts are approximative consistent. All their cations are stable and their stabilities decrease with the increase in their nitrogen contents.
基金supported by the Foundation Project of Jihua Laboratory(X200191TL200).
文摘In this study,the catalysis function of Na_(2)CO_(3) to the structural properties of xylan char was well investigated with Na_(2)CO_(3) on,and the electrochemical performance of xylan char as an anode material for sodium-ion batteries was tested.The characterization of X-ray microscopy and scanning electron microscopy demonstrated that the morphological structure of xylan char was altered due to the addition of Na_(2)CO_(3) catalyst.The increasement of the Na_(2)CO_(3)/xylan ratio resulted in a slenderization of the triangular prism shape of the char skeleton and a reduction in porosity.X-ray diffraction analysis revealed that Na_(2)CO_(3) promoted the growth of the(004)crystal plane of graphite during xylan pyrolysis,while inhibiting the formation of the(100/101)crystal planes.Raman spectroscopy analysis indicated that the presence of Na_(2)CO_(3)had changed the graphitization degree of xylan char.Electrochemical tests further showed that char prepared with a Na_(2)CO_(3)/xylan mass ratio of 1∶1 exhibited the highest sodium storage capacity.This study provides a pathway for the rational design carbon materials derived from xylan for future applications in energy storage devices.
文摘Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS parametric modeling technology is used to construct its three-dimensional geometric model,and geometric simplification is carried out.Two surface treatment processes,HK-35 zinc nickel alloy electroplating and pure zinc electroplating,were designed,and the influence of different coatings on the mechanical properties of steering knuckles was compared and analyzed through numerical simulation.At the same time,standard specimens were prepared for salt spray corrosion testing and scratch method combined strength testing to verify the numerical simulation results.The results showed that under emergency braking and composite working conditions,the peak Von Mises stress of the zinc nickel alloy coating was 119.85 MPa,which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Its equivalent strain value was 652×10^(-6),which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Experimental data confirms that zinc nickel alloy coatings exhibit significant advantages in stress distribution uniformity,strain performance,and load-bearing capacity in high stress zones.The salt spray corrosion test further indicates that the coating has superior corrosion resistance and coating substrate interface bonding strength,which can significantly improve the mechanical stability and long-term reliability of automotive precision electroplating mechanical structures.
文摘As by-products of petroleum refining,heavy oils are characterized by a high carbon content,low cost and great variability,making them competitive precursors for the anodes of potassium ion batteries(PIBs).However,the relationship between heavy oil composition and potassium storage performance remains unclear.Using heavy oils containing distinct chemical groups as the carbon source,namely fluid catalytic cracking slurry(FCCS),petroleum asphalt(PA)and deoiled asphalt(DOA),three carbon nanosheets(CNS)were prepared through a molten salt method,and used as the anodes for PIBs.The composition of the heavy oil determines the lamellar thicknesses,sp^(3)-C/sp^(2)-C ratio and defect concentration,thereby affecting the potassium storage performance.The high content of aromatic hydrocarbons and moderate amount of heavy component moieties in FCCS produce carbon nanosheets(CNS-FCCS)that have a smaller layer thickness,larger interlayer spacing(0.372 nm),and increased number of folds than in CNS derived from the other three precursors.These features give it faster charge/ion transfer,more potassium storage sites and better reaction kinetics.CNS-FCCS has a remarkable K^(+)storage capacity(248.7 mAh g^(-1) after 100 cycles at 0.1 A g^(-1)),long cycle lifespan(190.8 mAh g^(-1) after 800 cycles at 1.0 A g^(-1))and excellent rate capability,ranking it among the best materials for this application.This work sheds light on the influence of heavy oil composition on carbon structure and electrochemical performance,and provides guidance for the design and development of advanced heavy oil-derived carbon electrodes for PIBs.
基金CAS Photon Science Research Center for Carbon DioxideCAS President’s International Fellowship Initiative(2024PVA0097)+1 种基金National Key Research and Development Program of China(2017YFA0403000,2017YFA0402800)National Natural Science Foundation of China(U1932201,U1732121)。
文摘This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.
基金supported by the Longkou City Science and Technology Research and Development Plan(No.2020KJJH061).
文摘Developing supercapacitors(SCs)with long cycling life and wide operative voltage window is a significant topic in the field of aqueous electrolytes.Although the design of water in salt(WIS)electrolytes has pushed the development of aqueous electrolytes to a new height,the WIS electrolytes with an operative voltage window of up to 2.5 V is still very scarce.Herein,in order to enrich the type of aqueous electrolyte with high operative voltage,tetramethylammonium trifluoromethanesulfonate(TMAOTf)based WIS electrolyte was used as a model to construct WIS based hybrid electrolyte with acetonitrile(ACN)co-solvent and LiTFSI co-solute.In view of the coordination effect of ACN and Lit on free water in TMAOTf based WIS electrolyte,the TMAt-Lit-AWIS electrolyte has the electrochemical stabilization window of up to 3.35 V.Further coupled with the commercial YP-50F electrodes,TMAt-Lit-AWIS based SCs exhibited wide operative voltage window(2.5 V),long cycling life(45,000 cycles)and good low-temperature performance(99.99%capacitance retention after 2000 cycles at20℃).The design of this hybrid electrolyte will enrich the types of aqueous hybrid electrolytes with long cycling life and wide operative voltage window.
文摘Aryl-2,2′-bipyridine was obtained by means of the annulation reaction of ammonia and the addition product of each of β-arylvinamidinium salts with 2-acetyl pyridine. The annulation reaction was dependent on the nature of the substituent at the β-position of the vinamidinium species.
文摘硅橡胶复合绝缘子的憎水性迁移特性使其污层具有憎水性,污层中盐分的溶出和流失过程都变得复杂。绝缘子的污闪特性与表面污层受潮时溶解并参与导电的盐分紧密相关,对有效附盐密度(effective equivalent salt deposit density,EESDD,标记为ρEESDD)进行了更深入的研究。用溶出盐密减去流失盐密来表征有效附盐密度,通过试验研究了憎水性迁移时间和绝缘子表面灰密对ρEESDD的影响,以及自然积污绝缘子受潮过程中的ρEESDD。结果发现:绝缘子受潮时ρEESDD先增大后减小,最终趋于稳定;污层憎水性导致受潮时有效附盐密度的变化过程持续时间更长;灰密的增大会导致有效附盐密度的最大值更晚出现;自然积污绝缘子ρEESDD的最大值仅为污层总等值盐密的15%,说明较低的等值盐密也是复合绝缘子污闪电压高的原因之一。