High salinity industrial wastewater is difficult to treat using biological treatment system because of the high concentrations of salt.The potential of a sequencing batch biofilm reactor(SBBR)process in treating synth...High salinity industrial wastewater is difficult to treat using biological treatment system because of the high concentrations of salt.The potential of a sequencing batch biofilm reactor(SBBR)process in treating synthetic high salinity wastewater was evaluated at laboratory scale during a 110-day operation.The reactor was operated in a 12 h cycle,and each cycle consisted of 0.25 h influent addition,8 h aeration,3 h anoxic reaction,0.5 h sedimentation and 0.25 h effluent withdrawal.Gradual increase in salinity gradient was applied during the acclimatization period.The acclimated SBBR system was demonstrated to be an effective process to remove organic compounds and ammonia nitrogen under high salinity conditions with chemical oxygen demand(COD)and ammonia nitrogen(NH3-N)removal efficiencies of 88% and 80%,respectively.The microscopic examination indicated that rather than rotifers or vorticella,the zoogloea,filamentous fungus mingled with a small quantity of swimming infusorians were dominant bacteria in SBBR system.The removal efficiencies close to 80% in COD and 75% in NH3-N were achieved at an organic loading rate(OLR)of 0.96 kg COD/(m3·d),pH of 7.0,salinity of 14 g/L and NH3-N of 30 mg/L.展开更多
Natural soils contain a certain amount of salt in the form of dissolved ions or electrically charged atoms,originated from the long-term erosion by acidic rainwater.The dissolved salt poses an extra osmotic water pote...Natural soils contain a certain amount of salt in the form of dissolved ions or electrically charged atoms,originated from the long-term erosion by acidic rainwater.The dissolved salt poses an extra osmotic water potential being normally neglected in laboratory measurements and numerical analyses.However,ignorance of salinity may result in overestimation of stability,and the design may not be as conservative as thought.Therefore,this research aims to first experimentally examine the influence of pore water salinity on water retention curve and saturated permeability of natural dispersive loess under saline and desalinated conditions.Second,the measured parameters are used for stability analyses of a railway embankment in an area subjected to regional rainfall incident.Eventually,a numerical parametric study is carried out to explore the significance of different rainfall schemes,construction patterns,and anisotropic permeability on the factor of safety.Results reveal that desalinization suppresses the water retention capability,which in turn results in a tremendous declination of unsaturated hydraulic conductivity.Despite the natural saline embankment,rainfall can hardly infiltrate into the desalinated embankment due to the lower conductivity.Therefore,the factor of safety for natural saline conditions drops notably,while only marginal changes occur in the case of the desalinated embankment.展开更多
Over the past decade,the Mg/Ca ratio in foraminiferal tests has emerged as a valuable paleotemperature proxy.In this study we describe the application of the Mg/Ca paleothermometer with the aim of illustrate its use i...Over the past decade,the Mg/Ca ratio in foraminiferal tests has emerged as a valuable paleotemperature proxy.In this study we describe the application of the Mg/Ca paleothermometer with the aim of illustrate its use in the Mediterranean Basin.We value the influence of the salinity and diagenetic carbonate processes besides temperature as an important environmental factor controlling the foraminiferal Mg/Ca.For this purpose 3 species of展开更多
Effects of copper toxicity and salinity shock on selective group of juvenile pompano Trachinotus ovatus were investigated.The fish were exposed to different Cu2+ concentrations of 0(blank),0.02(C1),0.05(C2),0.10(C3),a...Effects of copper toxicity and salinity shock on selective group of juvenile pompano Trachinotus ovatus were investigated.The fish were exposed to different Cu2+ concentrations of 0(blank),0.02(C1),0.05(C2),0.10(C3),and 0.15 mg·L–1(C4)at a salinity of 10‰ or 40‰ for 96 h,with the salinity of 29‰ as the control.The results showed that the effects of the acute salinity stimulation to survival rates of pompano between control(29‰)and lower or higher salinity for 96 h were not significant(p>0.05).However,the survival rates in each treatment were decreased with the increase of Cu2+ concentration.The dominant factor influencing body moisture of the fish was salinity,and there was no sign that body moisture was correlated with exposure to Cu2+.The gill lamellas in high level of Cu2+ concentration(C4 treatments)were abnormal under the salinity of 40‰ and extremely curly under the salinity of 10‰.Hemorrhage in gill was observed in the two C4 treatments.Under transmission electron microscope,pillar cells in gill lamellas appeared deformed and ruptured in some areas of the epithelia in the higher concentration of Cu2+,resulting in the death of the fish due to the destruction of gill tissue,elevation of the arithmetic mean distance from water to blood,the decrease of oxygen diffusion capacity,and other physiological functions.These findings indicate that the pompano might suffer much more pressure when encountered with Cu2+ pollution and low salinity.展开更多
Salinity resistance and differential gene expression associated with salinity in cotton germplasm were studied,because of the large scale area of salinity in China,and its significant negative effects
Cotton is one of the most important fiber crops that plays a vital role in the textile industry.Its production has been unstable over the years due to climate change induced biotic stresses such as insects,diseases,an...Cotton is one of the most important fiber crops that plays a vital role in the textile industry.Its production has been unstable over the years due to climate change induced biotic stresses such as insects,diseases,and weeds,as well as abiotic stresses including drought,salinity,heat,and cold.Traditional breeding methods have been used to breed climate resilient cotton,but it requires a considerable amount of time to enhance crop tolerance to insect pests and changing climatic conditions.A promising strategy for improving tolerance against these stresses is genetic engineering.This review article discusses the role of genetic engineering in cotton improvement.The essential concepts and techniques include genome editing via clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(CRISPR-Cas9),overexpression of target genes,downregulation using RNA interference(RNAi),and virus-induced gene silencing(VIGS).Notably,the Agrobacterium-mediated transformation has made significant contributions to using these techniques for obtaining stable transgenic plants.展开更多
土壤盐渍化是干旱半干旱区土地退化的主要形式之一,其发生发展是一个复杂的非线性动力学过程。该文通过对吉林省长岭县土壤盐渍化成因及特征分析,确定土壤盐渍化影响因子及动态机制,并利用地理元胞自动机对复杂系统时空动态演化过程具...土壤盐渍化是干旱半干旱区土地退化的主要形式之一,其发生发展是一个复杂的非线性动力学过程。该文通过对吉林省长岭县土壤盐渍化成因及特征分析,确定土壤盐渍化影响因子及动态机制,并利用地理元胞自动机对复杂系统时空动态演化过程具有较强的计算及模拟能力特点,在G IS与RS支持下,建立土壤盐渍化CA动态模型,即土壤盐渍化地理元胞自动机模型(G eoCA-Sa lin ization),并结合相关属性数据和空间数据,模拟长岭县土壤盐渍化发生发展的时空动态规律,并对今后的可能发展做出预测。结果表明:基于G eoCA-Sa lin ization模型对长岭县土壤盐渍化时空演变进行的模拟与实际情况基本吻合,同时基于该模型的土壤盐渍化时空演变预测符合当前的发展态势。与其他方法相比,该方法能更好地实现任意有效离散时间距与瞬时动态可视化表达的结合,是土壤盐渍化时空演变模拟与预测较为有效的方法。展开更多
Background: Salinity is a major abiotic stress to global agriculture which hampers crop growth and development, and eventually reduces yield. Transgenic technology is an e ective and e cient approach to improve crop s...Background: Salinity is a major abiotic stress to global agriculture which hampers crop growth and development, and eventually reduces yield. Transgenic technology is an e ective and e cient approach to improve crop salt tolerance but depending on the availability of e ective genes. We previously isolated Salt Tolerance5(ThST5) from the halophyte Thellungiella halophila, an ortholog of Arabidopsis SPT4-2 which encodes a transcription elongation factor. However, SPT4-2-confered salt tolerance has not been evaluated in crops yet. Here we report the evaluation of Th ST5-conferred salt tolerance in cotton(Gossypium hirsutum L.).Results: The ThST5 overexpression transgenic cotton plants displayed enhanced tolerance to salt stress during seed germination and seedling stage compared with wild type. Particularly, the transgenic plants showed improved salinity tolerance as well as yield under saline field conditions. Comparative transcriptomic analysis showed that ThST5 improved salt tolerance of transgenic cotton mainly by maintaining ion homeostasis. In addition, ThST5 also orchestrated the expression of genes encoding antioxidants and salt-responsive transcription factors.Conclusion: Our results demonstrate that ThST5 is a promising candidate to improve salt tolerance in cotton.展开更多
Background Ensuring that seeds germinate and emerge normally is a prerequisite for cotton production,esp.in areas with salinized soil.Priming with mepiquat chloride(MC)can promote seed germination and root growth unde...Background Ensuring that seeds germinate and emerge normally is a prerequisite for cotton production,esp.in areas with salinized soil.Priming with mepiquat chloride(MC)can promote seed germination and root growth under salt stress,but its mechanism has not been fully elucidated.In this study,physiological and biochemical experiments revealed that MC-priming promotes the tolerance of cotton seeds to salt stress by increasing the ability of antioxidant enzymes related to the ascorbate-glutathione(AsA-GSH)cycle to scavenge reactive oxygen species(ROS).Results Results revealed that treatment with inhibitors of abscisic acid(ABA)and γ-aminobutyric acid(GABA)biosynthesis reduced the positive effects of MC-priming.Similarly,MC-priming increased the contents of ABA and GABA under salt stress by stimulating the expression levels of GhNCED2 and GhGAD4 and the activity of calmodulin-binding(CML)glutamate decarboxylase(GAD).Further analysis showed that an inhibitor of ABA synthesis reduced the positive impacts of MC-priming on the content of GABA under salt stress,but the content of ABA was not affected by the GABA synthesis inhibitor.Furthermore,a multi-omics analysis revealed that MC-priming increased the abundance and phosphorylation levels of the proteins related to ABA signaling,CML,and Ca^(2+)channels/transporters in the MC-primed treatments,which resulted in increased oscillations in Ca^(2+)in the MC-primed cotton seeds under salt stress.Conclusion In summary,these results demonstrate that MC-mediated ABA signaling operates upstream of the GABA synthesis generated by GAD by activating the oscillations of Ca^(2+)and then enhancing activity of the AsA-GSH cycle,which ensures that cotton seeds are tolerant to salt stress.展开更多
Desorption of total saturated fractions(i.e. SAT, defined for this study as the summation of the concentrations of the saturated hydrocarbon from n-C10 to n-C26) and polycyclic aromatic fractions(i.e. PAH, defined as ...Desorption of total saturated fractions(i.e. SAT, defined for this study as the summation of the concentrations of the saturated hydrocarbon from n-C10 to n-C26) and polycyclic aromatic fractions(i.e. PAH, defined as the summation of the concentrations of all polycyclic aromatic fractions including the 16 EPA priority PAH) in two types of soils subjected to the changes of p H and salinity and different bio-surfactant concentrations were investigated. In general, compared with the experiments without bio-surfactant addition, adding rhamnolipid to crude oil-water systems at concentrations above its critical micelle concentration(CMC) values benefits SAT and PAH desorption. The results indicate that the change of p H could have distinct effects on rhamnolipid performance concerning its own micelle structure and soil properties. For loam soil, the adsorption of non-aqueous phase liquid(NAPL) and rhamnolipid would be the principle limiting factors during the NAPL removal procedure. For sand soil, less amount of rhamnolipid is adsorbed onto soil. Thus, with the increase of salinity, the solubilization and desorption of rhamnolipid solution are more significant. In summary, the p H and salt sensitivity of the bio-surfactant will vary according to the specific structure of the surfactant characteristics and soil properties.展开更多
Background: Gossypium hirsutum(upland cotton) is one of the principal fiber crops in the world. Cotton yield is highly affected by abiotic stresses, among which salt stress is considered as a major problem around the ...Background: Gossypium hirsutum(upland cotton) is one of the principal fiber crops in the world. Cotton yield is highly affected by abiotic stresses, among which salt stress is considered as a major problem around the globe. Transgenic approach is efficient to improve cotton salt tolerance but depending on the availability of salt tolerance genes.Results: In this study we evaluated salt tolerance candidate gene ST7 from Thellungiella halophila, encoding a homolog of Arabidopsis aluminum-induced protein, in cotton. Our results showed that ThST7 overexpression in cotton improved germination under NaCl stress as well as seedling growth. Our field trials also showed that ThST7 transgenic cotton lines produced higher yield under salt stress conditions. The improved salt tolerance of the transgenic cotton lines was partially contributed by enhanced antioxidation as shown by diaminobenzidine(DAB) and nitrotetrazolium blue chloride(NBT) staining. Moreover, transcriptomic analysis of ThST7 overexpression lines showed a significant upregulation of the genes involved in ion homeostasis and antioxidation, consistent with the salt tolerance phenotype of the transgenic cotton.Conclusions: Our results demonstrate that ThST7 has the ability to improve salt tolerance in cotton. The ThST7 transgenic cotton may be used in cotton breeding for salt tolerance cultivars.展开更多
基金Projects(ZR2013BL010,ZR2012DL05)supported by the Natural Science Foundation of Shandong Province,ChinaProject(4041412016)supported by the Research Excellence Award of Shandong University of Technology,ChinaProjects(2013GG03116,2011GG02115)supported by the Science and Technology Development Planning Project of Zibo,China
文摘High salinity industrial wastewater is difficult to treat using biological treatment system because of the high concentrations of salt.The potential of a sequencing batch biofilm reactor(SBBR)process in treating synthetic high salinity wastewater was evaluated at laboratory scale during a 110-day operation.The reactor was operated in a 12 h cycle,and each cycle consisted of 0.25 h influent addition,8 h aeration,3 h anoxic reaction,0.5 h sedimentation and 0.25 h effluent withdrawal.Gradual increase in salinity gradient was applied during the acclimatization period.The acclimated SBBR system was demonstrated to be an effective process to remove organic compounds and ammonia nitrogen under high salinity conditions with chemical oxygen demand(COD)and ammonia nitrogen(NH3-N)removal efficiencies of 88% and 80%,respectively.The microscopic examination indicated that rather than rotifers or vorticella,the zoogloea,filamentous fungus mingled with a small quantity of swimming infusorians were dominant bacteria in SBBR system.The removal efficiencies close to 80% in COD and 75% in NH3-N were achieved at an organic loading rate(OLR)of 0.96 kg COD/(m3·d),pH of 7.0,salinity of 14 g/L and NH3-N of 30 mg/L.
基金the Iran’s National Elites Foundation and the Research Grant Office at Sharif University Technology for supporting this research by way of “Dr Kazemi-Ashtiani Award” and grant “G970902”,respectively。
文摘Natural soils contain a certain amount of salt in the form of dissolved ions or electrically charged atoms,originated from the long-term erosion by acidic rainwater.The dissolved salt poses an extra osmotic water potential being normally neglected in laboratory measurements and numerical analyses.However,ignorance of salinity may result in overestimation of stability,and the design may not be as conservative as thought.Therefore,this research aims to first experimentally examine the influence of pore water salinity on water retention curve and saturated permeability of natural dispersive loess under saline and desalinated conditions.Second,the measured parameters are used for stability analyses of a railway embankment in an area subjected to regional rainfall incident.Eventually,a numerical parametric study is carried out to explore the significance of different rainfall schemes,construction patterns,and anisotropic permeability on the factor of safety.Results reveal that desalinization suppresses the water retention capability,which in turn results in a tremendous declination of unsaturated hydraulic conductivity.Despite the natural saline embankment,rainfall can hardly infiltrate into the desalinated embankment due to the lower conductivity.Therefore,the factor of safety for natural saline conditions drops notably,while only marginal changes occur in the case of the desalinated embankment.
文摘Over the past decade,the Mg/Ca ratio in foraminiferal tests has emerged as a valuable paleotemperature proxy.In this study we describe the application of the Mg/Ca paleothermometer with the aim of illustrate its use in the Mediterranean Basin.We value the influence of the salinity and diagenetic carbonate processes besides temperature as an important environmental factor controlling the foraminiferal Mg/Ca.For this purpose 3 species of
基金supported by Special Scientific Research Funds for Central Non-profit Institutes,Chinese Academy of Fishery Sciences(2012A0401,2013A0501)
文摘Effects of copper toxicity and salinity shock on selective group of juvenile pompano Trachinotus ovatus were investigated.The fish were exposed to different Cu2+ concentrations of 0(blank),0.02(C1),0.05(C2),0.10(C3),and 0.15 mg·L–1(C4)at a salinity of 10‰ or 40‰ for 96 h,with the salinity of 29‰ as the control.The results showed that the effects of the acute salinity stimulation to survival rates of pompano between control(29‰)and lower or higher salinity for 96 h were not significant(p>0.05).However,the survival rates in each treatment were decreased with the increase of Cu2+ concentration.The dominant factor influencing body moisture of the fish was salinity,and there was no sign that body moisture was correlated with exposure to Cu2+.The gill lamellas in high level of Cu2+ concentration(C4 treatments)were abnormal under the salinity of 40‰ and extremely curly under the salinity of 10‰.Hemorrhage in gill was observed in the two C4 treatments.Under transmission electron microscope,pillar cells in gill lamellas appeared deformed and ruptured in some areas of the epithelia in the higher concentration of Cu2+,resulting in the death of the fish due to the destruction of gill tissue,elevation of the arithmetic mean distance from water to blood,the decrease of oxygen diffusion capacity,and other physiological functions.These findings indicate that the pompano might suffer much more pressure when encountered with Cu2+ pollution and low salinity.
文摘Salinity resistance and differential gene expression associated with salinity in cotton germplasm were studied,because of the large scale area of salinity in China,and its significant negative effects
文摘Cotton is one of the most important fiber crops that plays a vital role in the textile industry.Its production has been unstable over the years due to climate change induced biotic stresses such as insects,diseases,and weeds,as well as abiotic stresses including drought,salinity,heat,and cold.Traditional breeding methods have been used to breed climate resilient cotton,but it requires a considerable amount of time to enhance crop tolerance to insect pests and changing climatic conditions.A promising strategy for improving tolerance against these stresses is genetic engineering.This review article discusses the role of genetic engineering in cotton improvement.The essential concepts and techniques include genome editing via clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(CRISPR-Cas9),overexpression of target genes,downregulation using RNA interference(RNAi),and virus-induced gene silencing(VIGS).Notably,the Agrobacterium-mediated transformation has made significant contributions to using these techniques for obtaining stable transgenic plants.
文摘土壤盐渍化是干旱半干旱区土地退化的主要形式之一,其发生发展是一个复杂的非线性动力学过程。该文通过对吉林省长岭县土壤盐渍化成因及特征分析,确定土壤盐渍化影响因子及动态机制,并利用地理元胞自动机对复杂系统时空动态演化过程具有较强的计算及模拟能力特点,在G IS与RS支持下,建立土壤盐渍化CA动态模型,即土壤盐渍化地理元胞自动机模型(G eoCA-Sa lin ization),并结合相关属性数据和空间数据,模拟长岭县土壤盐渍化发生发展的时空动态规律,并对今后的可能发展做出预测。结果表明:基于G eoCA-Sa lin ization模型对长岭县土壤盐渍化时空演变进行的模拟与实际情况基本吻合,同时基于该模型的土壤盐渍化时空演变预测符合当前的发展态势。与其他方法相比,该方法能更好地实现任意有效离散时间距与瞬时动态可视化表达的结合,是土壤盐渍化时空演变模拟与预测较为有效的方法。
基金supported by grants from the Ministry of Science and Technol-ogy of China(Grant No.2016ZX08005004-003).
文摘Background: Salinity is a major abiotic stress to global agriculture which hampers crop growth and development, and eventually reduces yield. Transgenic technology is an e ective and e cient approach to improve crop salt tolerance but depending on the availability of e ective genes. We previously isolated Salt Tolerance5(ThST5) from the halophyte Thellungiella halophila, an ortholog of Arabidopsis SPT4-2 which encodes a transcription elongation factor. However, SPT4-2-confered salt tolerance has not been evaluated in crops yet. Here we report the evaluation of Th ST5-conferred salt tolerance in cotton(Gossypium hirsutum L.).Results: The ThST5 overexpression transgenic cotton plants displayed enhanced tolerance to salt stress during seed germination and seedling stage compared with wild type. Particularly, the transgenic plants showed improved salinity tolerance as well as yield under saline field conditions. Comparative transcriptomic analysis showed that ThST5 improved salt tolerance of transgenic cotton mainly by maintaining ion homeostasis. In addition, ThST5 also orchestrated the expression of genes encoding antioxidants and salt-responsive transcription factors.Conclusion: Our results demonstrate that ThST5 is a promising candidate to improve salt tolerance in cotton.
基金supported by the National Natural Science Foundation of China(32001481)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences+3 种基金the China Agriculture Research System,the National Modern Agricultural Industry Technology System of China(CARS-18–05)the Provincial Key R&D and Promotion Special Projects in Henan(232102110178)the Program for Key Areas of Science and Technology of Xinjiang Production and Construction Corps Third Division and Tumsuk City(KY2021GG08)the Central Public-interest Scientific Institution Basal Research Fund(1610162023019)。
文摘Background Ensuring that seeds germinate and emerge normally is a prerequisite for cotton production,esp.in areas with salinized soil.Priming with mepiquat chloride(MC)can promote seed germination and root growth under salt stress,but its mechanism has not been fully elucidated.In this study,physiological and biochemical experiments revealed that MC-priming promotes the tolerance of cotton seeds to salt stress by increasing the ability of antioxidant enzymes related to the ascorbate-glutathione(AsA-GSH)cycle to scavenge reactive oxygen species(ROS).Results Results revealed that treatment with inhibitors of abscisic acid(ABA)and γ-aminobutyric acid(GABA)biosynthesis reduced the positive effects of MC-priming.Similarly,MC-priming increased the contents of ABA and GABA under salt stress by stimulating the expression levels of GhNCED2 and GhGAD4 and the activity of calmodulin-binding(CML)glutamate decarboxylase(GAD).Further analysis showed that an inhibitor of ABA synthesis reduced the positive impacts of MC-priming on the content of GABA under salt stress,but the content of ABA was not affected by the GABA synthesis inhibitor.Furthermore,a multi-omics analysis revealed that MC-priming increased the abundance and phosphorylation levels of the proteins related to ABA signaling,CML,and Ca^(2+)channels/transporters in the MC-primed treatments,which resulted in increased oscillations in Ca^(2+)in the MC-primed cotton seeds under salt stress.Conclusion In summary,these results demonstrate that MC-mediated ABA signaling operates upstream of the GABA synthesis generated by GAD by activating the oscillations of Ca^(2+)and then enhancing activity of the AsA-GSH cycle,which ensures that cotton seeds are tolerant to salt stress.
基金Project(8102032) supported by Beijing Natural Science Foundation of China
文摘Desorption of total saturated fractions(i.e. SAT, defined for this study as the summation of the concentrations of the saturated hydrocarbon from n-C10 to n-C26) and polycyclic aromatic fractions(i.e. PAH, defined as the summation of the concentrations of all polycyclic aromatic fractions including the 16 EPA priority PAH) in two types of soils subjected to the changes of p H and salinity and different bio-surfactant concentrations were investigated. In general, compared with the experiments without bio-surfactant addition, adding rhamnolipid to crude oil-water systems at concentrations above its critical micelle concentration(CMC) values benefits SAT and PAH desorption. The results indicate that the change of p H could have distinct effects on rhamnolipid performance concerning its own micelle structure and soil properties. For loam soil, the adsorption of non-aqueous phase liquid(NAPL) and rhamnolipid would be the principle limiting factors during the NAPL removal procedure. For sand soil, less amount of rhamnolipid is adsorbed onto soil. Thus, with the increase of salinity, the solubilization and desorption of rhamnolipid solution are more significant. In summary, the p H and salt sensitivity of the bio-surfactant will vary according to the specific structure of the surfactant characteristics and soil properties.
基金supported by grants from Ministry of Science and Technology of China(Grant No.2016ZX08005004-003).
文摘Background: Gossypium hirsutum(upland cotton) is one of the principal fiber crops in the world. Cotton yield is highly affected by abiotic stresses, among which salt stress is considered as a major problem around the globe. Transgenic approach is efficient to improve cotton salt tolerance but depending on the availability of salt tolerance genes.Results: In this study we evaluated salt tolerance candidate gene ST7 from Thellungiella halophila, encoding a homolog of Arabidopsis aluminum-induced protein, in cotton. Our results showed that ThST7 overexpression in cotton improved germination under NaCl stress as well as seedling growth. Our field trials also showed that ThST7 transgenic cotton lines produced higher yield under salt stress conditions. The improved salt tolerance of the transgenic cotton lines was partially contributed by enhanced antioxidation as shown by diaminobenzidine(DAB) and nitrotetrazolium blue chloride(NBT) staining. Moreover, transcriptomic analysis of ThST7 overexpression lines showed a significant upregulation of the genes involved in ion homeostasis and antioxidation, consistent with the salt tolerance phenotype of the transgenic cotton.Conclusions: Our results demonstrate that ThST7 has the ability to improve salt tolerance in cotton. The ThST7 transgenic cotton may be used in cotton breeding for salt tolerance cultivars.