期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
基于KPCA-SAE-BP模型的有源干扰识别算法
1
作者 赵忠臣 刘利民 +2 位作者 解辉 韩壮志 荆贺 《现代防御技术》 北大核心 2025年第3期159-166,共8页
针对强噪声环境下雷达新型有源干扰识别准确率不高的问题,提出了一种KPCA-SAE-BP网络算法。提取干扰信号时域、频域、波形域、小波域、双谱域等特征构建67维输入空间,经过核主成分分析(kernel principal component analysis,KPCA)将高... 针对强噪声环境下雷达新型有源干扰识别准确率不高的问题,提出了一种KPCA-SAE-BP网络算法。提取干扰信号时域、频域、波形域、小波域、双谱域等特征构建67维输入空间,经过核主成分分析(kernel principal component analysis,KPCA)将高维数据进行非线性降维与重构,利用SAE-BP神经网络完成分类识别。仿真结果表明,在干噪比(JNR)大于-1 dB的强噪声环境中,KPCA-SAE-BP网络算法对6种新型有源干扰的识别准确率达到90%以上,训练与识别时间少于0.7 s。相同参数条件下,与经典BP神经网络、SAE-BP网络、KPCA-BP网络、GA-BP网络相比,具有更好的检测识别性能。 展开更多
关键词 有源干扰识别 核主成分分析 堆叠自编码器 反向传播神经网络 特征提取 特征降维
在线阅读 下载PDF
SAE J1939协议栈设计及μC/OS-Ⅱ系统下的开发平台的研究 被引量:7
2
作者 夏继强 李晓君 +1 位作者 曹磊 孙进 《汽车工程》 EI CSCD 北大核心 2008年第12期1069-1074,共6页
设计了SAE J1939协议栈。它采用分层结构,定义了相应的报文数据结构,并实现了分段传输功能。以该协议栈为核心,提出了一种基于μC/OS-Ⅱ的SAE J1939汽车ECU通用开发平台。通过一个客车用汽车仪表的开发实例,验证了SAE J1939协议栈及该EC... 设计了SAE J1939协议栈。它采用分层结构,定义了相应的报文数据结构,并实现了分段传输功能。以该协议栈为核心,提出了一种基于μC/OS-Ⅱ的SAE J1939汽车ECU通用开发平台。通过一个客车用汽车仪表的开发实例,验证了SAE J1939协议栈及该ECU通用开发平台的正确性。应用此协议栈和通用开发平台,ECU的研发只需编写针对应用的代码,大大缩短了汽车ECU产品的开发周期。 展开更多
关键词 sae J1939 协议栈 CAN总线 ECU μC/OS—Ⅱ
在线阅读 下载PDF
基于独立稀疏SAE的多风电场超短期功率预测 被引量:9
3
作者 李丹 王奇 +1 位作者 杨保华 张远航 《电力系统及其自动化学报》 CSCD 北大核心 2022年第2期23-30,共8页
为应对多风电场超短期预测模型中输入和输出变量众多、变量间的时空关系复杂等问题,提出一种基于独立稀疏堆叠自编码器的多风电场超短期功率预测方法。该方法基于降维编码、特征预测和重构解码相结合的预测框架,首先设计了一种独立稀疏... 为应对多风电场超短期预测模型中输入和输出变量众多、变量间的时空关系复杂等问题,提出一种基于独立稀疏堆叠自编码器的多风电场超短期功率预测方法。该方法基于降维编码、特征预测和重构解码相结合的预测框架,首先设计了一种独立稀疏双层堆叠自编码器提取多维风电功率的空间独立特征,并将其作为预测对象分别预测,最后将特征预测的结果重构解码,获得多风电场功率的预测结果。对实际算例的验证结果表明,独立稀疏堆叠自编码器能增强提取特征的可靠性、独立性和合理性,从而有效提高多风电场超短期功率预测的精度和效率。 展开更多
关键词 多风电场 功率预测 堆叠自编码器 稀疏性约束 独立性约束
在线阅读 下载PDF
一种基于BOA-SAE-EELM的光伏阵列故障诊断方法 被引量:9
4
作者 陈世群 杨耿杰 高伟 《太阳能学报》 EI CAS CSCD 北大核心 2022年第4期154-161,共8页
光伏阵列非线性输出的特性以及最大功率点跟踪算法,会影响光伏阵列保护设备的工作。为了正确辨识光伏阵列的运行状态,本研究提出一种基于贝叶斯优化算法(BOA)、堆栈自动编码器(SAE)以及集成极限学习机(EELM)相结合的故障诊断方法。首先... 光伏阵列非线性输出的特性以及最大功率点跟踪算法,会影响光伏阵列保护设备的工作。为了正确辨识光伏阵列的运行状态,本研究提出一种基于贝叶斯优化算法(BOA)、堆栈自动编码器(SAE)以及集成极限学习机(EELM)相结合的故障诊断方法。首先,将光伏阵列的时序波形进行标准化处理;接着,使用SAE对标准化后的时序波形进行特征自动提取,并训练一个EELM的故障分类模型;最后,利用BOA对诊断模型的超参数进行优化。实验结果表明所提方法对仿真和实验的故障诊断准确率分别达到了98.40%和98.10%,优于反向传播(BP)神经网络、支持向量机、随机森林等方法。 展开更多
关键词 光伏阵列 故障诊断 堆栈自动编码器 极限学习机 贝叶斯优化算法 时序波形
在线阅读 下载PDF
基于SAE-GA-SVM模型的雷达新型干扰识别 被引量:9
5
作者 罗彬珅 刘利民 +1 位作者 董健 刘璟麒 《计算机工程》 CAS CSCD 北大核心 2020年第6期281-287,共7页
针对频谱弥散干扰、切片组合干扰、灵巧噪声干扰、噪声调幅-距离欺骗加性复合干扰与噪声调频-距离欺骗加性复合干扰5种干扰类型的识别问题,提出一种基于SAE-GA-SVM的检测模型算法。建立目标回波与干扰信号的数学模型,采用多域联合的特... 针对频谱弥散干扰、切片组合干扰、灵巧噪声干扰、噪声调幅-距离欺骗加性复合干扰与噪声调频-距离欺骗加性复合干扰5种干扰类型的识别问题,提出一种基于SAE-GA-SVM的检测模型算法。建立目标回波与干扰信号的数学模型,采用多域联合的特征提取方法提取47维特征。为有效去除冗余信息并保持较高的识别率,运用深度学习中的稀疏自编码器(SAE),通过SAE结构建立高维空间和低维空间的双向映射,从而获得原始数据的相应最优低维表示。利用遗传算法优化支持向量机的惩罚因子和核函数参数,构建基于SAE-GA-SVM的雷达新型干扰识别检测模型。仿真结果表明,该模型能够有效降低特征维度,相比传统的GA-SVM检测模型识别准确率提高10%。 展开更多
关键词 新型干扰 特征提取 特征降维 堆叠自编码器 遗传算法
在线阅读 下载PDF
基于栈式自编码网络的风机叶片结冰预测 被引量:16
6
作者 刘娟 黄细霞 刘晓丽 《计算机应用》 CSCD 北大核心 2019年第5期1547-1550,共4页
针对风电机组叶片结冰严重影响风机发电效率和安全性、经济性的问题,提出一种基于SCADA数据的栈式自编码(SAE)网络叶片结冰早期预测模型。该模型采用编码-解码的非监督方法对无标签的数据集预训练,再利用反向传播算法对有标签的数据集... 针对风电机组叶片结冰严重影响风机发电效率和安全性、经济性的问题,提出一种基于SCADA数据的栈式自编码(SAE)网络叶片结冰早期预测模型。该模型采用编码-解码的非监督方法对无标签的数据集预训练,再利用反向传播算法对有标签的数据集进行训练微调,实现了故障特征的自适应提取和状态分类,有效降低了传统预测模型的复杂度,同时避免了人为特征提取对模型效果的影响。利用SCADA系统采集的某15号风机的历史数据进行训练和测试,该模型测试结果准确率为97.28%。与支持向量机(SVM)和主成分分析-支持向量机(PCA-SVM)方法得到的建模分别为91%和93%的准确率进行对比分析,实验结果表明,基于栈式自编码网络的风机叶片结冰预测模型精确度更高。 展开更多
关键词 风机叶片结冰预测 栈式自编码 深度学习 预测模型
在线阅读 下载PDF
基于栈式自编码器的磁探测电阻抗成像算法研究 被引量:9
7
作者 陈瑞娟 戚昊峰 +2 位作者 李炳南 王慧泉 王金海 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第1期257-264,共8页
针对目前磁探测电阻抗成像算法图像重建分辨率不高、精确度低的问题,提出了一种基于栈式自编码(SAE)神经网络的磁探测电阻抗成像算法。使用方形成像体进行仿真实验,通过训练样本建立SAE神经网络模型,确定神经元权重和偏置值。利用该网... 针对目前磁探测电阻抗成像算法图像重建分辨率不高、精确度低的问题,提出了一种基于栈式自编码(SAE)神经网络的磁探测电阻抗成像算法。使用方形成像体进行仿真实验,通过训练样本建立SAE神经网络模型,确定神经元权重和偏置值。利用该网络模型重建成像体内部的电导率分布;并在异质体中心位置、算法的抗噪性能等方面将重建结果与基于Levenberg-Marquardt算法的反向传播神经网络的重建结果进行对比。结果表明栈式自编码神经网络算法显著提高了磁探测电阻抗成像的重建精度、抗噪性能。最后,通过仿体实验验证了SAE算法的可行性。根据实际测得的磁场,使用神经网络算法重建电导率,准确定位异质体位置。SAE神经网络算法的提出对于磁探测电阻抗成像技术的广泛应用具有重要意义。 展开更多
关键词 磁探测电阻抗成像 逆问题 栈式自编码 反向传播神经网络
在线阅读 下载PDF
基于HOG的目标分类特征深度学习模型 被引量:6
8
作者 何希平 张琼华 刘波 《计算机工程》 CAS CSCD 北大核心 2016年第12期176-180,187,共6页
为提高低配置计算环境中的视觉目标实时在线分类特征提取的时效性和分类准确率,提出一种新的目标分类特征深度学习模型。根据高时效性要求,选用分类器模型离线深度学习的策略,以节约在线训练时间。针对网络深度受限和高识别率要求,提取... 为提高低配置计算环境中的视觉目标实时在线分类特征提取的时效性和分类准确率,提出一种新的目标分类特征深度学习模型。根据高时效性要求,选用分类器模型离线深度学习的策略,以节约在线训练时间。针对网络深度受限和高识别率要求,提取图像的局部方向梯度直方图(HOG)特征,构建稀疏自编码器栈对HOG特征进行深层次编码,设计Softmax多分类器对所抽取的特征进行分类。在深度神经网络模型学习过程中,引入最小化各层结构风险和微调全网参数的二阶段最优化策略。利用场景图像库Caltech101和手写数字库MNIST的训练样本与测试样本进行对比实验,结果表明,该模型在局部特征提取方面的时效优于单层卷积神经网络(CNN)模型,分类准确率高于CNN、栈式自编码器等对比模型。 展开更多
关键词 计算机视觉 目标分类 方向梯度直方图特征 栈式自编码器 深度学习
在线阅读 下载PDF
基于堆栈式自动编码器的加密流量识别方法 被引量:19
9
作者 王攀 陈雪娇 《计算机工程》 CAS CSCD 北大核心 2018年第11期140-147,153,共9页
基于浅层机器学习的加密流量识别方法准确率偏低,在特征提取和选择方面耗时耗力。为此,提出一种基于堆栈式自动编码器(SAE)的加密流量识别方法。该方法利用SAE的无监督特性及在数据降维等方面的优势,结合多层感知机(MLP)的有监督分类学... 基于浅层机器学习的加密流量识别方法准确率偏低,在特征提取和选择方面耗时耗力。为此,提出一种基于堆栈式自动编码器(SAE)的加密流量识别方法。该方法利用SAE的无监督特性及在数据降维等方面的优势,结合多层感知机(MLP)的有监督分类学习,实现对加密应用流量的准确识别。考虑到样本数据集的类别不平衡性对分类精度的影响,采用SMOTE过抽样方法对不平衡数据集进行处理。实验结果表明,该方法各项性能指标均优于MLP加密流量识别方法,识别精确度和召回率以及F1-Score均可达到99%。 展开更多
关键词 加密流量识别 深度学习 堆栈式自动编码器 流量分类 多层感知机 卷积神经网络
在线阅读 下载PDF
考虑动态过程的可调资源集群多时间节点响应潜力评估方法 被引量:13
10
作者 孔祥玉 刘超 +2 位作者 陈宋宋 陈启鑫 王铮涛 《电力系统自动化》 EI CSCD 北大核心 2022年第18期55-64,共10页
随着高比例可再生能源的接入,负荷侧可调节资源成为各类电网平衡调节业务的重要手段。为获取可调资源集群在各种不确定性因素影响下不同时间节点响应潜力的概率分布,提出了考虑动态过程的可调资源集群多时间节点响应潜力评估方法。该方... 随着高比例可再生能源的接入,负荷侧可调节资源成为各类电网平衡调节业务的重要手段。为获取可调资源集群在各种不确定性因素影响下不同时间节点响应潜力的概率分布,提出了考虑动态过程的可调资源集群多时间节点响应潜力评估方法。该方法首先提出考虑响应动态过程的响应潜力评估指标,然后使用集成经验模态分解和堆栈自编码器提取可调资源用电特征,接着将该特征用于求取消费者心理学模型中的关键参数,最终形成各时间节点下可调资源集群响应潜力的概率分布。最后,通过算例分析验证了所提方法的有效性,并分析了典型业务场景下集群的有效响应潜力。 展开更多
关键词 电网平衡调节 可调资源 潜力评估 集成经验模态分解 堆栈自编码器 多时间节点 动态响应指标
在线阅读 下载PDF
基于堆叠自编码网络的风电机组发电机状态监测与故障诊断 被引量:58
11
作者 赵洪山 刘辉海 +1 位作者 刘宏杨 林酉阔 《电力系统自动化》 EI CSCD 北大核心 2018年第11期102-108,共7页
为实现风力发电机的异常检测分析,提出了一种基于风电机组发电机正常状态下数据采集与监控(SCADA)样本数据的堆叠自编码网络深度学习方法。首先将多个自编码网络连接构成深度堆叠自编码网络,选取发电机SCADA状态变量数据作为网络的训练... 为实现风力发电机的异常检测分析,提出了一种基于风电机组发电机正常状态下数据采集与监控(SCADA)样本数据的堆叠自编码网络深度学习方法。首先将多个自编码网络连接构成深度堆叠自编码网络,选取发电机SCADA状态变量数据作为网络的训练输入,使网络逐层智能提取数据间的分布式规则,从而构建发电机的堆叠自编码学习模型。依据故障状态下发电机SCADA数据内部动态平衡规则被破坏,利用发电机深度学习网络的输入与重构值计算重构误差,并作为整体状态的观测量。通过采用自适应阈值检测重构误差的状态趋势变化,并作为异常预警判定准则,从而实现对发电机故障的判定。当发电机发生异常时,变量的实际值与对应模型的重构值发生较大偏差,表现为状态变量的残差趋势将会偏离原有的动态稳定状态。因此利用状态变量的残差趋势变化对异常变量进行隔离,判定可能的故障原因达到故障诊断的目的。通过对发电机故障前后记录数据进行仿真分析,结果验证了堆叠自编码网络深度学习方法对发电机状态监测与故障诊断的有效性。 展开更多
关键词 风电机组 深度学习 堆叠自编码 状态监测 故障诊断
在线阅读 下载PDF
基于数据均衡的增进式深度自动图像标注 被引量:7
12
作者 周铭柯 柯逍 杜明智 《软件学报》 EI CSCD 北大核心 2017年第7期1862-1880,共19页
自动图像标注是一个包含众多标签、多样特征的富有挑战性的研究问题,是新一代图像检索与图像理解的关键步骤.针对传统的基于浅层机器学习标注算法标注效率低下、难以处理复杂分类任务的问题,提出了基于栈式自动编码器(stacked auto-enco... 自动图像标注是一个包含众多标签、多样特征的富有挑战性的研究问题,是新一代图像检索与图像理解的关键步骤.针对传统的基于浅层机器学习标注算法标注效率低下、难以处理复杂分类任务的问题,提出了基于栈式自动编码器(stacked auto-encoder,简称SAE)的自动图像标注算法,提升了标注效率和标注效果.主要针对图像标注数据不平衡问题,提出两种解决思路:对于标注模型,提出一种增强训练中低频标签的平衡栈式自动编码器(B-SAE),较好地改善了中低频标签的标注效果.并在该模型的基础上提出一种分组强化训练B-SAE子模型的鲁棒平衡栈式自动编码器算法(RB-SAE),提升了标注的稳定性,从而保证模型本身具有较强的处理不平衡数据的能力;对于标注过程,以未知图像作为出发点,首先构造未知图像的局部均衡数据集,并判定该图像的高低频属性以决定不同的标注过程,局部语义传播算法(SP)标注中低频图像,RB-SAE算法标注高频图像,形成属性判别的标注框架(ADA),保证了标注过程具有较强的应对不平衡数据的能力,从而提升整体图像标注效果.通过在3个公共数据集上进行实验验证,结果表明,该方法在许多指标上相比以往方法均有较大提高. 展开更多
关键词 sae(stacked auto-encoder) 深度学习 数据均衡 图像标注 语义传播
在线阅读 下载PDF
基于堆叠自动编码器的电力系统暂态稳定评估 被引量:83
13
作者 朱乔木 陈金富 +3 位作者 李弘毅 石东源 李银红 段献忠 《中国电机工程学报》 EI CSCD 北大核心 2018年第10期2937-2946,共10页
将深度学习的思想和模型引入电力系统暂态稳定评估研究中,提出一种基于堆叠自动编码器的电力系统暂态稳定评估方法。该方法无需人工计算形成输入特征,直接面向底层量测数据,通过深层架构建立量测数据与稳定类别之间的非线性映射关系... 将深度学习的思想和模型引入电力系统暂态稳定评估研究中,提出一种基于堆叠自动编码器的电力系统暂态稳定评估方法。该方法无需人工计算形成输入特征,直接面向底层量测数据,通过深层架构建立量测数据与稳定类别之间的非线性映射关系。采用一种“预训练一参数微调”的两阶段学习方法,同时引入稀疏化技术和Dropout技术对模型参数进行优化。训练后的模型能够依靠深层结构挖掘数据的隐藏模式,提取出有利于暂态稳定评估的高阶特征。此外,该方法能够通过大量无标注样本的无监督训练提高模型泛化能力,从而大大缩减训练样本时域仿真耗时。新英格兰10机39节点系统上的仿真结果表明所提方法比常规浅层评估方法的评估性能更加优越。 展开更多
关键词 深度学习 电力系统 暂态稳定评估 堆叠自动编码器 底层量测数据
在线阅读 下载PDF
栈式自编码的恶意代码分类算法研究 被引量:6
14
作者 罗世奇 田生伟 +1 位作者 孙华 禹龙 《计算机应用研究》 CSCD 北大核心 2018年第1期261-265,共5页
针对传统机器学习方法不能有效地提取恶意代码的潜在特征,提出了基于栈式自编码(stacked auto encoder,SAE)的恶意代码分类算法。其次从大量训练样本中学习并提取恶意代码纹理图像特征、指令语句中的隐含特征;在此基础上,为提高特征选... 针对传统机器学习方法不能有效地提取恶意代码的潜在特征,提出了基于栈式自编码(stacked auto encoder,SAE)的恶意代码分类算法。其次从大量训练样本中学习并提取恶意代码纹理图像特征、指令语句中的隐含特征;在此基础上,为提高特征选择对分类算法准确性的提高,将恶意代码纹理特征以及指令语句频度特征进行融合,训练栈式自编码器和softmax分类器。实验结果表明,基于恶意代码纹理特征以及指令频度特征,利用栈式自编码分类算法对恶意代码具有较好的分类能力,其分类准确率高于传统浅层机器学习模型(随机森林、支持向量机),相比随机森林的方法提高了2.474%,相比SVM的方法提高了1.235%。 展开更多
关键词 栈式自编码 恶意代码 分类
在线阅读 下载PDF
基于栈式自编码器特征融合的SAR图像车辆目标识别 被引量:19
15
作者 康妙 计科峰 +2 位作者 冷祥光 邢相薇 邹焕新 《雷达学报(中英文)》 CSCD 2017年第2期167-176,共10页
该文提出了一种基于栈式自编码器(Stacked Auto Encoder,SAE)特征融合的合成孔径雷达(Synthetic Aperture Rader,SAR)图像车辆目标识别算法。首先,该算法提取了SAR图像的25种基线特征(baseline features)和局部纹理特征(Three-Patch Loc... 该文提出了一种基于栈式自编码器(Stacked Auto Encoder,SAE)特征融合的合成孔径雷达(Synthetic Aperture Rader,SAR)图像车辆目标识别算法。首先,该算法提取了SAR图像的25种基线特征(baseline features)和局部纹理特征(Three-Patch Local Binary Patterns,TPLBP)。然后将特征串联输入SAE网络中进行融合,采用逐层贪婪训练法对网络进行预训练。最后利用softmax分类器微调网络,提高网络融合性能。另外,该文提取了SAR图像的Gabor纹理特征,进行了不同特征之间的融合实验。结果表明基线特征与TPLBP特征冗余性小,互补性好,融合后的特征区分性大。与直接利用SAE,CNN(Convolutional Neural Network)进行目标识别的算法相比,基于SAE的特征融合算法简化了网络结构,提高了识别精度与识别效率。基于MSTAR数据集的10类目标分类精度达95.88%,验证了算法的有效性。 展开更多
关键词 SAR 目标识别 特征融合 栈式自编码器 MSTAR
在线阅读 下载PDF
基于栈式自动编码机的选票手写字符识别算法 被引量:3
16
作者 徐傲 彭程 《计算机应用》 CSCD 北大核心 2017年第A02期183-185,197,共4页
针对选举系统手写字符识别率低的问题,提出基于栈式自动编码机(SAE)的手写字符识别算法。首先利用无监督学习,通过栈式自动编码神经网络逐层训练,获得比原始数据更加抽象和健壮的高阶特征;然后,利用监督学习,结合Softmax神经网络,整体... 针对选举系统手写字符识别率低的问题,提出基于栈式自动编码机(SAE)的手写字符识别算法。首先利用无监督学习,通过栈式自动编码神经网络逐层训练,获得比原始数据更加抽象和健壮的高阶特征;然后,利用监督学习,结合Softmax神经网络,整体微调训练网络优化模型,根据提取出的高阶特征进行字符识别;最后,通过提出的统计阈值判别法,不具有二义性的符号直接输出,人工审核有二义性的符号以保证识别结果的高准确率。实验结果表明,该算法相比图像处理方法、浅层学习算法等都具有更高的准确率,且能在一定程度上处理二义性填涂,适用于正式的选举场景。 展开更多
关键词 选票系统 手写字符 栈式自动编码机 Softmax回归 深度学习
在线阅读 下载PDF
奇异值分解和稀疏自编码器的轴承故障诊断 被引量:16
17
作者 曹浩 陈里里 +1 位作者 司吉兵 任君兰 《计算机工程与应用》 CSCD 北大核心 2019年第20期257-262,270,共7页
针对滚动轴承故障特征提取和分类需要进行有监督训练才能实现等问题,提出了一种基于奇异值分解(SVD)和时域统计特征分析并结合堆栈稀疏自编码器(SAE)以及Softmax 分类器实现滚动轴承故障诊断方法。该方法利用Hankle 矩阵对原始数据进行... 针对滚动轴承故障特征提取和分类需要进行有监督训练才能实现等问题,提出了一种基于奇异值分解(SVD)和时域统计特征分析并结合堆栈稀疏自编码器(SAE)以及Softmax 分类器实现滚动轴承故障诊断方法。该方法利用Hankle 矩阵对原始数据进行矩阵重构,利用奇异值分解和时域分析对重构后的故障信号进行特征预提取,融合两种特征并输入到堆栈稀疏自编码器中进行特征优化,将优化后的特征输入到Softmax 分类器中进行分类识别。实验结果表明,3 种工况下10 类故障数据的识别准确率均在96%左右,且高于文中其他方法,因此该方法能有效地进行滚动轴承复杂信号的特征预处理以及分类。 展开更多
关键词 滚动轴承故障 奇异值分解(SVD) 时域分析 堆栈稀疏自编码器(sae)
在线阅读 下载PDF
基于高光谱图像技术结合深度学习算法的萝卜种子品种鉴别 被引量:5
18
作者 杭盈盈 李亚婷 孙妙君 《农业工程》 2020年第5期29-33,共5页
提出一种基于可见-近红外光谱技术的无损检测方法,以期实现对萝卜种子品种的鉴别。通过光谱成像系统采集6类常见萝卜种子的高光谱图像,并利用HSI软件提取光谱数据。使用Savitzky Golay(SG)平滑与多元散射校正(multiple scattering corre... 提出一种基于可见-近红外光谱技术的无损检测方法,以期实现对萝卜种子品种的鉴别。通过光谱成像系统采集6类常见萝卜种子的高光谱图像,并利用HSI软件提取光谱数据。使用Savitzky Golay(SG)平滑与多元散射校正(multiple scattering correction,MSC)叠加对光谱数据进行预处理以消除高频随机误差。采用堆叠自动编码器(stacked autoencoder,SAE)、连续投影算法(successive projections algorithm,SPA)和变量迭代空间收缩算法(variable iterative space shrinkage approach,VISSA)进行数据降维。利用Softmax与支持向量机(support vector machine,SVM)算法对全光谱和选取的特征光谱数据建立分类模型。结果表明:SAE-Softmax模型的分类效果最优,其训练集和预测集准确率分别达99.72%和96.22%。因此,利用可见-近红外光谱技术与深度学习算法结合的方法对萝卜种子的品种鉴别是可行的。该研究为种子品种无损检测分析提供参考。 展开更多
关键词 高光谱 萝卜种子 堆叠自动编码器 连续投影算法 变量迭代空间收缩方法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部