近些年,多主体系统的理论及应用得到了人们的广泛关注,并得以迅速发展.研究者提出了很多基于多主体系统理论的模型,用于求解各种问题.AER(Agent-environment-rules)模型正是一个用于求解约束满足问题较为成功的例子.但是,主体的静态策...近些年,多主体系统的理论及应用得到了人们的广泛关注,并得以迅速发展.研究者提出了很多基于多主体系统理论的模型,用于求解各种问题.AER(Agent-environment-rules)模型正是一个用于求解约束满足问题较为成功的例子.但是,主体的静态策略选择在一定程度上限制了模型的求解性能.将模拟退火算法与多主体系统思想相结合,并赋予主体更为高效的动态策略选择的能力,提出了SAAER模型(simulated annealing based AER model).基于约束满足问题经典实例——N-Queen问题和染色问题的实验表明,改进后的模型较之原模型获得了更高的效率和稳定性.对于N=10000的大规模N-Queen问题,能在200s左右的时间求得精确解.展开更多
为了满足功率电路及系统设计对p-GaN HEMT(High Electron Mobility Transistor)器件模型的需求,本文建立了一套基于表面势计算方法的增强型p-GaN HEMT器件SPICE(Simulation Program with Integrated Circuit Emphasis)模型.根据耗尽型Ga...为了满足功率电路及系统设计对p-GaN HEMT(High Electron Mobility Transistor)器件模型的需求,本文建立了一套基于表面势计算方法的增强型p-GaN HEMT器件SPICE(Simulation Program with Integrated Circuit Emphasis)模型.根据耗尽型GaN HEMT器件和增强型p-GaN HEMT器件结构的对比,推导出p-GaN栅结构电压解析公式.考虑到p-GaN栅掺杂效应和物理机理,推导出栅电容和栅电流解析公式.同时,与基于表面势的高电子迁移率晶体管高级SPICE模型内核相结合,建立完整的增强型p-GaN HEMT功率器件的SPICE模型.将所建立的SPICE模型与实测结果进行对比验证.结果表明,所建立的模型准确实现了包括转移特性、输出特性、栅电容以及栅电流在内的p-GaN HEMT器件的电学特性.模型仿真数据与实测数据拟合度误差均小于5%.本文所提出的增强型p-GaN HEMT器件模型在进行电路设计时具有重要的应用价值.展开更多
RAN S(R eyno lds-averaged N av ier-Stokes)加湍流模型是当前计算飞机粘性流场的最常用方法,数值实践说明要计算大分离流动,需要更高级的方法例如LES(Large Eddy S im u lation)或DN S(D irect N S S im u lation)。然而实际雷诺数下,...RAN S(R eyno lds-averaged N av ier-Stokes)加湍流模型是当前计算飞机粘性流场的最常用方法,数值实践说明要计算大分离流动,需要更高级的方法例如LES(Large Eddy S im u lation)或DN S(D irect N S S im u lation)。然而实际雷诺数下,LES和DN S对网格的要求太高,以至目前还难以应用。DES(D etached-Eddy S im u lation)方法结合了RAN S和LES的优点,通过对Spalart-A llm aras湍流模型中长度尺度的修正,在近壁面它体现为RAN S模型的特点,而在远离物面处又保持LES的亚格子模型的特性。论文对比了采用RAN S和DES方法数值模拟翼型失速特性的能力,并与实验结果进行了对比。结果表明,对大分离流动的数值模拟,DES方法体现出更强的能力。展开更多
文摘近些年,多主体系统的理论及应用得到了人们的广泛关注,并得以迅速发展.研究者提出了很多基于多主体系统理论的模型,用于求解各种问题.AER(Agent-environment-rules)模型正是一个用于求解约束满足问题较为成功的例子.但是,主体的静态策略选择在一定程度上限制了模型的求解性能.将模拟退火算法与多主体系统思想相结合,并赋予主体更为高效的动态策略选择的能力,提出了SAAER模型(simulated annealing based AER model).基于约束满足问题经典实例——N-Queen问题和染色问题的实验表明,改进后的模型较之原模型获得了更高的效率和稳定性.对于N=10000的大规模N-Queen问题,能在200s左右的时间求得精确解.
文摘RAN S(R eyno lds-averaged N av ier-Stokes)加湍流模型是当前计算飞机粘性流场的最常用方法,数值实践说明要计算大分离流动,需要更高级的方法例如LES(Large Eddy S im u lation)或DN S(D irect N S S im u lation)。然而实际雷诺数下,LES和DN S对网格的要求太高,以至目前还难以应用。DES(D etached-Eddy S im u lation)方法结合了RAN S和LES的优点,通过对Spalart-A llm aras湍流模型中长度尺度的修正,在近壁面它体现为RAN S模型的特点,而在远离物面处又保持LES的亚格子模型的特性。论文对比了采用RAN S和DES方法数值模拟翼型失速特性的能力,并与实验结果进行了对比。结果表明,对大分离流动的数值模拟,DES方法体现出更强的能力。