The algorithm is an image encryption algorithm based on the improved baker transformation and chaotic substitution box(S-box). It mainly uses the initial values and parameters of a one-dimensional logistic chaotic sys...The algorithm is an image encryption algorithm based on the improved baker transformation and chaotic substitution box(S-box). It mainly uses the initial values and parameters of a one-dimensional logistic chaotic system as an encryption key. Specifically, in the image scrambling stage, the algorithm primarily uses an improved baker transform method to process the image. In the image diffusion stage, the algorithm first uses the chaotic S-box method to process the encryption key. Secondly, an exclusive OR(XOR) operation is performed on the image and the encryption key to initially diffuse the image. Finally, the image is again diffused using the method of ortho XOR. Simulation analysis shows that the algorithm can achieve good encryption effect, simple and easy implementation, and good security. In the digital image communication transmission, it has good practical value.展开更多
Single or multiple S-boxes are widely used in image encryption schemes, and in many image encryption schemes the asynchronous encryption structure is utilized, which separates the processes of substitution and diffusi...Single or multiple S-boxes are widely used in image encryption schemes, and in many image encryption schemes the asynchronous encryption structure is utilized, which separates the processes of substitution and diffusion. In this paper, we analyze the defects of this structure based on the example of an article and crack it using a simpler method. To address the defects of the asynchronous encryption structure, a novel encryption scheme is proposed, in which the structure of synchronous substitution and diffusion based on double S-boxes is utilized, so the processes of substitution and diffusion are combined together and the attackers cannot crack the cryptosystem by any of the processes. The simulation results and security analysis show that the proposed encryption scheme is safer and more efficient to expediently use in the real-time system.展开更多
Based on the theory of polymorphic virtual S-box, the paper presents a symmetric key exchange protocol to solve the problem of session keys delete shared in the computational complexity temporary trading scenario. Bot...Based on the theory of polymorphic virtual S-box, the paper presents a symmetric key exchange protocol to solve the problem of session keys delete shared in the computational complexity temporary trading scenario. Both parties jointly construct a highly nonlinear SPN core algorithm. The paper the connotation of polymorphic cipher theory, making use of the method of self-compiler based expansion factor to collect random parameter sets held by each of the parties containing its own information 5-tuple private keys array Kpa[5] and Kpb[5].The more efficient polymorphism virtual S-box is constructed. The method of secret split for the public key cryptography features can be implemented by symmetry cipher system. The research results will provide a theoretical basis to solve the key exchange problems for short- term communications partner based on symmetric cryptography.展开更多
The wireless sensor network (WSN) has been widely used in various fields, but it still remains in the preliminary discovery and research phase with a lack of various related mature technologies. Traditional encrypti...The wireless sensor network (WSN) has been widely used in various fields, but it still remains in the preliminary discovery and research phase with a lack of various related mature technologies. Traditional encryption schemes are not suitable for wireless sensor networks due to intrinsic features of the nodes such as low energy, limited computation capability, and lack of storage resources. In this paper, we present a novel block encryption scheme based on the integer discretization of a chaotic map, the Feistel network structure, and an S-box. The novel scheme is fast, secure, has low resource consumption and is suitable for wireless sensor network node encryption schemes. The experimental tests are carried out with detailed analysis, showing that the novel block algorithm has a large key space, very good diffusion and disruptive performances, a strict avalanche effect, excellent statistical balance, and fast encryption speed. These features enable the encryption scheme to pass the SP800-22 test. Meanwhile, the analysis and the testing of speed, time, and storage space on the simulator platform show that this new encryption scheme is well able to hide data information in wireless sensor networks.展开更多
Rapid single flux quantum(RSFQ)circuits are a kind of superconducting digital circuits,having properties of a natural gate-level pipelining synchronous sequential circuit,which demonstrates high energy efficiency and ...Rapid single flux quantum(RSFQ)circuits are a kind of superconducting digital circuits,having properties of a natural gate-level pipelining synchronous sequential circuit,which demonstrates high energy efficiency and high throughput advantage.We find that the high-throughput and high-speed performance of RSFQ circuits can take the advantage of a hardware implementation of the encryption algorithm,whereas these are rarely applied to this field.Among the available encryption algorithms,the advanced encryption standard(AES)algorithm is an advanced encryption standard algorithm.It is currently the most widely used symmetric cryptography algorithm.In this work,we aim to demonstrate the SubByte operation of an AES-128 algorithm using RSFQ circuits based on the SIMIT Nb0_(3) process.We design an AES S-box circuit in the RSFQ logic,and compare its operational frequency,power dissipation,and throughput with those of the CMOS-based circuit post-simulated in the same structure.The complete RSFQ S-box circuit costs a total of 42237 Josephson junctions with nearly 130 Gbps throughput under the maximum simulated frequency of 16.28 GHz.Our analysis shows that the frequency and throughput of the RSFQ-based S-box are about four times higher than those of the CMOS-based S-box.Further,we design and fabricate a few typical modules of the S-box.Subsequent measurements demonstrate the correct functioning of the modules in both low and high frequencies up to 28.8 GHz.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 61672124)the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund,China (Grant No. MMJJ20170203)+3 种基金the Liaoning Provincial Science and Technology Innovation Leading Talents Program Project,China (Grant No. XLYC1802013)the Key Research and Development Projects of Liaoning Province,China (Grant No. 2019020105-JH2/103)the Jinan City ‘20 universities’ Funding Projects Introducing Innovation Team Program,China (Grant No. 2019GXRC031)the “Double First-rate”Construction Project (“Innovation Project”),China (Grant No. SSCXXM013)。
文摘The algorithm is an image encryption algorithm based on the improved baker transformation and chaotic substitution box(S-box). It mainly uses the initial values and parameters of a one-dimensional logistic chaotic system as an encryption key. Specifically, in the image scrambling stage, the algorithm primarily uses an improved baker transform method to process the image. In the image diffusion stage, the algorithm first uses the chaotic S-box method to process the encryption key. Secondly, an exclusive OR(XOR) operation is performed on the image and the encryption key to initially diffuse the image. Finally, the image is again diffused using the method of ortho XOR. Simulation analysis shows that the algorithm can achieve good encryption effect, simple and easy implementation, and good security. In the digital image communication transmission, it has good practical value.
基金Project supported by the Natural Science Foundation of Shaanxi Province,China(Grant No.2014JM8322)
文摘Single or multiple S-boxes are widely used in image encryption schemes, and in many image encryption schemes the asynchronous encryption structure is utilized, which separates the processes of substitution and diffusion. In this paper, we analyze the defects of this structure based on the example of an article and crack it using a simpler method. To address the defects of the asynchronous encryption structure, a novel encryption scheme is proposed, in which the structure of synchronous substitution and diffusion based on double S-boxes is utilized, so the processes of substitution and diffusion are combined together and the attackers cannot crack the cryptosystem by any of the processes. The simulation results and security analysis show that the proposed encryption scheme is safer and more efficient to expediently use in the real-time system.
基金the National Natural Science Foundation of China under Grant No.61272038 and No.61340059,Zhengzhou Academician Workstation Funded Projects,the Education Department of Henan Province Science and Technology Research Project,Key Project of Science and Technology Research,the Doctor Fund of Zhengzhou University of Light Industry
文摘Based on the theory of polymorphic virtual S-box, the paper presents a symmetric key exchange protocol to solve the problem of session keys delete shared in the computational complexity temporary trading scenario. Both parties jointly construct a highly nonlinear SPN core algorithm. The paper the connotation of polymorphic cipher theory, making use of the method of self-compiler based expansion factor to collect random parameter sets held by each of the parties containing its own information 5-tuple private keys array Kpa[5] and Kpb[5].The more efficient polymorphism virtual S-box is constructed. The method of secret split for the public key cryptography features can be implemented by symmetry cipher system. The research results will provide a theoretical basis to solve the key exchange problems for short- term communications partner based on symmetric cryptography.
基金supported by the National Natural Science Foundation of China (Grant No.60973162)the Natural Science Foundation of Shandong Province,China (Grant No.ZR2009GM037)+4 种基金the Key Natural Science Foundation of Shandong Province,China (Grant No.Z2006G01)the Science and Technology Fund of Shandong Province,China (Grant No.2010GGX10132)the Scientific Research Foundation of Harbin Institute of Technology at Weihai,China (Grant No.HIT(WH)ZB200909)the Technology Research and Development Program of Weihai High-Technology Development Zone in Shandong Province,China (Grant No.201025)the Technology Research and Development Program of Weihai,China (Grant No.2008011)
文摘The wireless sensor network (WSN) has been widely used in various fields, but it still remains in the preliminary discovery and research phase with a lack of various related mature technologies. Traditional encryption schemes are not suitable for wireless sensor networks due to intrinsic features of the nodes such as low energy, limited computation capability, and lack of storage resources. In this paper, we present a novel block encryption scheme based on the integer discretization of a chaotic map, the Feistel network structure, and an S-box. The novel scheme is fast, secure, has low resource consumption and is suitable for wireless sensor network node encryption schemes. The experimental tests are carried out with detailed analysis, showing that the novel block algorithm has a large key space, very good diffusion and disruptive performances, a strict avalanche effect, excellent statistical balance, and fast encryption speed. These features enable the encryption scheme to pass the SP800-22 test. Meanwhile, the analysis and the testing of speed, time, and storage space on the simulator platform show that this new encryption scheme is well able to hide data information in wireless sensor networks.
基金This work was supported by the National Natural Science Foundation of China(Grant No.92164101)the National Natural Science Foundation of China(Grant No.62171437)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA18000000)Shanghai Science and Technology Committee(Grant No.21DZ1101000)the National Key R&D Program of China(Grant No.2021YFB0300400).
文摘Rapid single flux quantum(RSFQ)circuits are a kind of superconducting digital circuits,having properties of a natural gate-level pipelining synchronous sequential circuit,which demonstrates high energy efficiency and high throughput advantage.We find that the high-throughput and high-speed performance of RSFQ circuits can take the advantage of a hardware implementation of the encryption algorithm,whereas these are rarely applied to this field.Among the available encryption algorithms,the advanced encryption standard(AES)algorithm is an advanced encryption standard algorithm.It is currently the most widely used symmetric cryptography algorithm.In this work,we aim to demonstrate the SubByte operation of an AES-128 algorithm using RSFQ circuits based on the SIMIT Nb0_(3) process.We design an AES S-box circuit in the RSFQ logic,and compare its operational frequency,power dissipation,and throughput with those of the CMOS-based circuit post-simulated in the same structure.The complete RSFQ S-box circuit costs a total of 42237 Josephson junctions with nearly 130 Gbps throughput under the maximum simulated frequency of 16.28 GHz.Our analysis shows that the frequency and throughput of the RSFQ-based S-box are about four times higher than those of the CMOS-based S-box.Further,we design and fabricate a few typical modules of the S-box.Subsequent measurements demonstrate the correct functioning of the modules in both low and high frequencies up to 28.8 GHz.