期刊文献+
共找到130篇文章
< 1 2 7 >
每页显示 20 50 100
Bimetallic CoNi single atoms supported on three-dimensionally ordered mesoporous chromia:highly active catalysts for n-hexane combustion 被引量:1
1
作者 Xiuqing Hao Yuxi Liu +4 位作者 Jiguang Deng Lin Jing Jia Wang Wenbo Pei Hongxing Dai 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1122-1137,共16页
Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile... Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O. 展开更多
关键词 Three-dimensional ordered mesoporous chromium oxide Supported bimetallic single-atom catalyst Cobalt-nickel single atoms n-Hexane combustion Catalytic reaction mechanism
在线阅读 下载PDF
Elucidating the structure-activity relationship of Cu-Ag bimetallic catalysts for electrochemical CO_(2) reduction
2
作者 Qining Huang Lili Wan +1 位作者 Qingxuan Ren Jingshan Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期345-351,I0009,共8页
Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential fo... Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential for catalyst design.Herein,we prepared two Cu-Ag bimetallic catalysts with Ag nanoparticles attached to the top or the bottom of Cu nanowires.When tested in a flow cell,the Cu-Ag catalyst with Ag nanoparticles on the bottom achieved a faradaic efficiency of 54%for ethylene production,much higher than the catalyst with Ag nanoparticles on the top.The catalysts were further studied in the H-cell and zero-gap MEA cell.It was found that placing the two metals in the intensified reaction zone is crucial to triggering the tandem reaction of bimetallic catalysts.Our work elucidates the structure-activity relationship of bimetallic catalysts for CO_(2) reduction and demonstrates the importance of considering both catalyst structures and cell characteristics to achieve high activity and selectivity. 展开更多
关键词 Electrochemical CO_(2)reduction bimetallic catalyst CU-AG Structure-activity relationship
在线阅读 下载PDF
Advancements in transition bimetal catalysts for electrochemical 5-hydroxymethylfurfural(HMF) oxidation 被引量:1
3
作者 Yuwei Li Huiting Huang +4 位作者 Mingkun Jiang Wanlong Xi Junyuan Duan Marina Ratova Dan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期24-46,共23页
The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Tran... The electrochemical oxidation of 5-hydroxymethylfurfural(HMF) represents a significant avenue for sustainable chemical synthesis, owing to its potential to generate high-value derivatives from biomass feedstocks. Transition metal catalysts offer a cost-effective alternative to precious metals for catalyzing HMF oxidation, with transition bimetallic catalysts emerging as particularly promising candidates. In this review, we delve into the intricate reaction pathways and electrochemical mechanisms underlying HMF oxidation, emphasizing the pivotal role of transition bimetallic catalysts in enhancing catalytic efficiency. Subsequently, various types of transition bimetallic catalysts are explored, detailing their synthesis methods and structural modulation strategies. By elucidating the mechanisms behind catalyst modification and performance enhancement, this review sets the stage for upcoming advancements in the field, ultimately advancing the electrochemical HMF conversion and facilitating the transition towards sustainable chemical production. 展开更多
关键词 HMF oxidation Transition metal catalysts bimetallic catalysts Biomass valorization Electrocatalyst synthesis
在线阅读 下载PDF
Effect of manganese on the catalytic performance of an iron-manganese bimetallic catalyst for light olefin synthesis 被引量:16
4
作者 Tingzhen Li Hulin Wang +2 位作者 Yong Yang Hongwei Xiang Yongwang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第4期624-632,共9页
A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst s... A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst samples were characterized by N2 physisorption, transmis- sion electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), Mossbauer spectroscopy, H2- differential thermogravimetric analysis (H2-DTG), CO temperature-programmed reduction (CO-TPR) and CO2 temperature-programmed des- orption (CO2-TPD). The Fischer-Tropsch synthesis (FTS) performance of the catalyst was measured at 1.5 MPa, 250 ℃ and syngas with H2/CO ratio of 2.0. The characterization results indicated that the addition of manganese decreases the catalyst crystallite size, and improves the catalyst BET surface area and pore volume. The presence of manganese suppresses the catalyst reduction and carburization in H2, CO and syngas, respectively. The addition of manganese improves the catalytic activity of water-gas shift reaction and suppresses the oxidation of iron carbides in the FTS reaction. The incorporation of manganese improves the catalyst surface basicity and results in a significant improvement in the selectivities to light olefins and heavy hydrocarbons (C5+), and furthermore an inhibition of methane formation in FTS. The pure iron catalyst (Mn-00) has the highest initial FTS catalytic activity (65%) and the lowest selectivity (17.35 wt%) to light olefins (C2=-C4=). The addition of an appropriate amount of manganese can improve the catalyst FTS activity. 展开更多
关键词 light olefin Fischer-Tropsch synthesis iron-manganese bimetallic catalyst CARBURIZATION
在线阅读 下载PDF
Effects of the Different Supports on the Activity and Selectivity of Iron-Cobalt Bimetallic Catalyst for Fischer-Tropsch Synthesis 被引量:3
5
作者 Xiangdong Ma Qiwen Sun +2 位作者 Fahai Cao Weiyong Ying Dingye Fang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第4期335-339,共5页
Silica, alumina, and activated carbon supported iron-cobalt catalysts were prepared by incipient wetness impregnation. These catalysts have been characterized by BET, X-ray diffraction (XRD), and temperature-program... Silica, alumina, and activated carbon supported iron-cobalt catalysts were prepared by incipient wetness impregnation. These catalysts have been characterized by BET, X-ray diffraction (XRD), and temperature-programmed reduction (TPR). Activity and selectivity of iron-cobalt supported on different carriers for CO hydrogenation were studied under the conditions of 1.5 MPa, 493 K, 630 h^-1, and H2/CO ratio of 1.6. The results indicate that the activity, C4 olefin/(C4 olefin+C4 paraffin) ratio, and C5 olefin/(C5 olefin+C5 paraffin) decrease in the order of Fe-Co/SiO2, Fe-Co/AC1, Fe-Co/Al2O3 and Fe- Co/AC2. The activity of Fe-Co/SiO2 reached a maximum. The results of TPR show that the Fe-Co/SiO2 catalyst is to some extent different. XRD patterns show that the Fe-Co/SiO2 catalyst differs significantly from the others; it has two diffraction peaks. The active spinel phase is correlated with the supports. 展开更多
关键词 Fischer-Tropsch synthesis bimetallic catalyst iron COBALT support silica ALUMINA active carbon SYNGAS
在线阅读 下载PDF
Synergistic effects of bimetallic Cu-Fe/SiO_2 nanocatalysts in selective hydrogenation of diethyl malonate to 1,3-propanediol 被引量:2
6
作者 Le He Xiaoxiao Gong +2 位作者 Linmin Ye Xinping Duan Youzhu Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期1038-1044,共7页
Cu-x-Fe-y/SiO2 catalysts were prepared using urea-assisted sol-gel method. The structure and physicochemical properties of the catalysts were characterized using N-2 adsorption-desorption, transmission electron micros... Cu-x-Fe-y/SiO2 catalysts were prepared using urea-assisted sol-gel method. The structure and physicochemical properties of the catalysts were characterized using N-2 adsorption-desorption, transmission electron microscopy, H-2-temperature-programmed reduction, powder X-ray diffraction, and X-ray photoelectron spectroscopy. Compared with monometallic Cu or Fe catalysts, the bimetallic Cu-x-Fe-y/SiO2 catalysts exhibited enhanced catalytic performance for the selective hydrogenation of diethyl malonate to 1,3-propanediol. The bimetallic catalyst with an optimal Cu/Fe atomic ratio of 2 exhibited the highest activity, which yielded 96.3% conversion to diethyl malonate and 93.3% selectivity to 1,3-propanediol under the optimal reaction conditions. Characterization results revealed that interactions between Cu and Fe contributed to the improvement of diethyl malonate conversion and selectivity to 1,3-propanediol. The X-ray photoelectron spectroscopy results revealed that the addition of appropriate amount of Fe species enhanced the reduction of Cu2+ species, thereby increasing the Cu-0 species on the surface of bimetallic catalyst. It led to a better chemisorption capacity of hydrogen and further promoted of the activation of hydrogen molecule. The ethyl acetate temperature-programmed desorption results indicated that the FeOx species provided the additional adsorption sites for substrate molecules, and they activated the C=O bond. The improved catalytic performance of bimetallic Cu-x-Fe-y/SiO2 catalyst was mainly attributed to the synergistic effect between Cu-0 and FeOx species. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 bimetallic catalyst HYDROGENATION 1 3-PROPANEDIOL Cu-Fe Synergistic effect
在线阅读 下载PDF
Confinement and synergy effects of supported-confined bimetal catalysts with superior stability and catalytic activity
7
作者 Yujun Sheng Farah Hazmatulhaq +5 位作者 Abdullah Al Mahmud Mostafa S.Sayed Iftikhar Hussain Stefano Leoni Wail Al Zoubi Young Gun Ko 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期93-99,共7页
Bimetallic nanocrystals have attracted considerable attention because of their complicated systems,which are far superior to those of their individual constituents.A TiO_(2)-confined PtMnP bimetallic catalyst(PtMnP@Ti... Bimetallic nanocrystals have attracted considerable attention because of their complicated systems,which are far superior to those of their individual constituents.A TiO_(2)-confined PtMnP bimetallic catalyst(PtMnP@TiO_(2)) was prepared using an ultrasonic-assisted coincident strategy,which demonstrated exceptional catalytic activity in the universal hydrogen evolution reaction (HER).Owing to the bimetallic synergistic effect and TiO_(2) confinement,PtMnP@TiO_(x)showed ultrasmall metal nanoparticles (NPs),a higher active Pt^(0) content,adequate activation at the porous surface,and abundant acid sites.Simulations were performed to visualize the strain properties of Mn and Pt during the bending process and demonstrate the high activity of Pt.The Pt-Mn bimetallic catalysts were enriched with Pt NPs,convoyed by electron transfer from Mn to Pt.Briefly,PtMnP@TiO_(2) showed robust evolution reaction activities (an overpotential of 220 mV at a current density of 10 mA cm^(-2) and a Tafel slope of 186 mV dec^(-1))and the ability to contrast stated catalysts without ultrasonication-plasma.This protocol revealed that the geometrical and electronic effects of Pt and P surrounding the Mn species in PtMnP@TiO_(2) were crucial for increasing the catalytic activity (99%) and durability (over 20 cycles),which were far superior to those of other reported catalysts. 展开更多
关键词 SYNERGY bimetal catalyst STABILITY Activity
在线阅读 下载PDF
Atomically Dispersed Fe-Co Bimetallic Catalysts for the Promoted Electroreduction of Carbon Dioxide 被引量:4
8
作者 Zhangsen Chen Gaixia Zhang +6 位作者 Yuren Wen Ning Chen Weifeng Chen Tom Regier James Dynes Yi Zheng Shuhui Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第2期79-93,共15页
The electroreduction reaction of CO_(2)(ECO_(2)RR)requires high-performance catalysts to convert CO_(2)into useful chemicals.Transition metal-based atomically dispersed catalysts are promising for the high selectivity... The electroreduction reaction of CO_(2)(ECO_(2)RR)requires high-performance catalysts to convert CO_(2)into useful chemicals.Transition metal-based atomically dispersed catalysts are promising for the high selectivity and activity in ECO_(2)RR.This work presents a series of atomically dispersed Co,Fe bimetallic catalysts by carbonizing the Fe-introduced Co-zeolitic-imidazolate-framework(C-Fe-Co-ZIF)for the syngas generation from ECO_(2)RR.The synergistic effect of the bimetallic catalyst promotes CO production.Compared to the pure C-Co-ZiF,C-Fe-Co-ZIF facilitates CO production with a CO Faradaic efficiency(FE)boost of 10%,with optimal FE_(CO)of 51.9%,FE_(H_(2))of 42.4%at-0.55 V,and CO current density of 8.0 mA cm^(-2)at-0.7 V versus reversible hydrogen electrode(RHE).The H_(2)/CO ratio is tunable from 0.8 to 4.2 in a wide potential window of-0.35 to-0.8 V versus RHE.The total FE_(CO+H_(2))maintains as high as 93%over 10 h.The proper adding amount of Fe could increase the number of active sites and create mild distortions for the nanoscopic environments of Co and Fe,which is essential for the enhancement of the CO production in ECO_(2)RR.The positive impacts of Cu-Co and Ni-Co bimetallic catalysts demonstrate the versatility and potential application of the bimetallic strategy for ECO_(2)RR. 展开更多
关键词 CO_(2)reduction ELECTROCATALYSIS Syngas production COBALT IRON bimetallic catalysts
在线阅读 下载PDF
In-situ constructing Cu_(1)Bi_(1)bimetallic catalyst to promote the electroreduction of CO_(2)to formate by synergistic electronic and geometric effects 被引量:4
9
作者 Houan Ren Xiaoyu Wang +5 位作者 Xiaomei Zhou Teng Wang Yuping Liu Cai Wang Qingxin Guan Wei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期263-271,共9页
Electrochemical CO_(2)reduction to formate is a potential approach to achieving global carbon neutrality.Here,Cu1Bi1bimetallic catalyst was prepared by a co-precipitation method.It has a ginger like composite structur... Electrochemical CO_(2)reduction to formate is a potential approach to achieving global carbon neutrality.Here,Cu1Bi1bimetallic catalyst was prepared by a co-precipitation method.It has a ginger like composite structure(CuO/CuBi_(2)O_(4))and exhibited a high formate faradaic efficiency of 98.07%at–0.98 V and a large current density of–56.12 mA.cm^(-2)at–1.28 V,which is twice as high as Bi2O3catalyst.Especially,high selectivity(FE^(–)_(HCOO)>85%)is maintained over a wide potential window of 500 mV.In-situ Raman measurements and structure characterization revealed that the reduced Cu1Bi1bimetallic catalyst possesses abundant Cu-Bi interfaces and residual Bi-O structures.The abundant Cu-Bi interface structures on the catalyst surface can provide abundant active sites for CO_(2)RR,while the Bi-O structures may stabilize the CO_(2)^(*–)intermediate.The synergistic effect of abundant Cu-Bi interfaces and Bi-O species promotes the efficient synthesis of formate by following the OCHO^(*)pathway. 展开更多
关键词 CO_(2)electroreduction bimetallic catalyst FORMATE Cu-Bi interfaces Bi-O structure
在线阅读 下载PDF
Long-range electron synergy over Pt_(1)-Co_(1)/CN bimetallic single-atom catalyst in enhancing charge separation for photocatalytic hydrogen production 被引量:4
10
作者 Man Yang Jing Mei +3 位作者 Yujing Ren Jie Cui Shuhua Liang Shaodong Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期502-509,I0011,共9页
The development of novel single-atom catalysts with optimal electron configuration and economical noble-metal cocatalyst for efficient photocatalytic hydrogen production is of great importance,but still challenging.He... The development of novel single-atom catalysts with optimal electron configuration and economical noble-metal cocatalyst for efficient photocatalytic hydrogen production is of great importance,but still challenging.Herein,we fabricate Pt and Co single-atom sites successively on polymeric carbon nitride(CN).In this Pt_(1)-Co_(1)/CN bimetallic single-atom catalyst,the noble-metal active sites are maximized,and the single-atomic Co_(1)N_4sites are tuned to Co_(1)N_3sites by photogenerated electrons arising from the introduced single-atomic Pt_(1)N_4sites.Mechanism studies and density functional theory(DFT)calculations reveal that the 3d orbitals of Co_(1)N_3single sites are filled with unpaired d-electrons,which lead to the improved visible-light response,carrier separation and charge migration for CN photocatalysts.Thereafter,the protons adsorption and activation are promoted.Taking this advantage of long-range electron synergy in bimetallic single atomic sites,the photocatalytic hydrogen evolution activity over Pt_(1)-Co_(1)/CN achieves 915.8 mmol g^(-1)Pt h^(-1),which is 19.8 times higher than Co_(1)/CN and 3.5 times higher to Pt_(1)/CN.While this electron-synergistic effect is not so efficient for Pt nanoclusters.These results demonstrate the synergistic effect at electron-level and provide electron-level guidance for the design of efficient photocatalysts. 展开更多
关键词 bimetallic single-atom catalyst Long-range electron synergy Charge separation/transfer Carbon nitride Hydrogen production
在线阅读 下载PDF
Reverse Microemulsion Synthesis and Characterization of Pd-Ag Bimetallic Alloy Catalysts Supported on Al_2O_3 for Acetylene Hydrogenation 被引量:4
11
作者 Wei Guobin Dai Wei +2 位作者 Li Qian Cao Weiliang Zhang Jingchang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2012年第3期59-67,共9页
Pd-Ag bimetallic alloy nanoparticles were synthesized by the reverse microemulsion method, and then deposited on A1203 to form the supported catalyst. The nanoparticles of Pd-Ag and Pd-Ag/AI203 samples were characteri... Pd-Ag bimetallic alloy nanoparticles were synthesized by the reverse microemulsion method, and then deposited on A1203 to form the supported catalyst. The nanoparticles of Pd-Ag and Pd-Ag/AI203 samples were characterized by UV/ Vis, HRTEM, EDX, XRD, and XPS. The test results indicated that Pd-Ag bimetallic alloy nanoparticles with a size of about 2 nm and a face-centered cubic (fcc) structure were formed in the measured area of microemulsion. The growth of nanopar- ticles was effectively limited within the droplet of micoremulsion. TEM image exhibited that the Pd-Ag alloy nanoparticles were well-dispersed on the A1203 support. The catalytic performance of various catalysts for selective hydrogenation of acetylene showed that a higher acetylene conversion and selectivity to ethylene upon acetylene hydrogenation was achieved on a nano-sized Pd-Ag bimetallic catalyst with a Pd/Ag alloy supported molar ratio of 1:1.5. 展开更多
关键词 reverse microemulsion Pd-Ag bimetallic catalyst NANOPARTICLE acetylene hydrogenation
在线阅读 下载PDF
Base-free aerobic oxidation of glycerol on TiO_2-supported bimetallic Au–Pt catalysts 被引量:5
12
作者 Yihong Shen Yuming Li Haichao Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第5期669-673,共5页
The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au-Pt, Au-... The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au-Pt, Au- Pd and Pt-Pd catalysts on TiO2 were examined under base-free conditions. Pt exhibited a superior activity relative to Pd, and Au-Pd and Pt-Pd while Au was essentially inactive. The presence of Au on the Au-Pt/TiO2 catalysts led to their higher activities (normalized per Pt atom) in a wide range of Au/Pt atomic ratios (i.e. 1/3-7/1 ), and the one with the Au/Pt ratio of 3/1 exhibited the highest activity. Such promoting effect is ascribed to the increased electron density on Pt via the electron transfer from Au to Pt, as characterized by the temperature-programmed desorption of CO and infra-red spectroscopy for CO adsorption. Meanwhile, the presence of Au on Au-Pt/TiO2, most like due to the observed electron transfer, changed the product selectivity, and facilitated the oxidation of the secondary hydroxyl groups in glycerol, leading to the favorable formation of dihydroxyacetone over glyceraldehyde and glyceric acid that were derived from the oxidation of the primary hydroxyl groups. The synergetic effect between Au and Pt demonstrates the feasibility in the efficient oxidation of glycerol to the targeted products, for example, by rational tuning of the electronic properties of metal catalysts. 展开更多
关键词 Glycerol aerobic oxidation Glyceraldehyde Dihydroxyacetone bimetallic Au-Pt catalyst Synergetic effect
在线阅读 下载PDF
Boosting the water gas shift reaction on Pt/CeO_(2)-based nanocatalysts by compositional modification: Support doping versus bimetallic alloying 被引量:3
13
作者 Kun Yuan Xiao-Chen Sun +4 位作者 Hai-Jing Yin Liang Zhou Hai-Chao Liu Chun-Hua Yan Ya-Wen Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期241-249,共9页
The water gas shift reaction is of vital significance for the generation and transition of energy due to the application in hydrogen production and industries such as ammonia synthesis and fuel cells.The influence of ... The water gas shift reaction is of vital significance for the generation and transition of energy due to the application in hydrogen production and industries such as ammonia synthesis and fuel cells.The influence of support doping and bimetallic alloying on the catalytic performance of Pt/Ce O_(2)-based nanocatalysts in water gas shift reaction was reported in this work.Various lanthanide ions and 3d transition metals were respectively introduced into the Ce O_(2)support or Pt to form Pt/Ce O_(2):Ln(Ln=La,Nd,Gd,Tb,Yb)and Pt M/Ce O_(2)(M=Fe,Co,Ni)nanocatalysts.The sample of Pt/Ce O_(2):Tb showed the highest activity(TOF at 200℃=0.051 s^(-1))among the Pt/Ce O_(2):Ln and the undoped Pt/Ce O_(2)catalysts.Besides,the sample of Pt Fe/Ce O_(2)exhibited the highest activity(TOF at 200℃=0.12 s^(-1))among Pt M/Ce O_(2)catalysts.The results of the multiple characterizations indicated that the catalytic activity of Pt/Ce O_(2):Ln catalysts was closely correlated with the amount of oxygen vacancies in doped ceria support.However,the different activity of Pt M/Ce O_(2)bimetallic catalysts was owing to the various Pt oxidation states of the bimetals dispersed on ceria.The study of the reaction pathway indicated that both the samples of Pt/Ce O_(2)and Pt/Ce O_(2):Tb catalyzed the reaction through the formate pathway,and the enhanced activity of the latter derived from the increased concentration of oxygen vacancies along with promoted water dissociation.As for the sample of Pt Fe/Ce O_(2),its catalytic mechanism was the carboxyl route with a higher reaction rate due to the moderate valence of Pt along with improved CO activation. 展开更多
关键词 Pt/CeO_(2)catalysts Water–gas shift reaction Support doping bimetallic alloying
在线阅读 下载PDF
Conjugated polymerized bimetallic phthalocyanine based electrocatalyst with Fe-N_(4)/Co-N_(4) dual-sites synergistic effect for zinc-air battery 被引量:2
14
作者 Shuaifeng Wang Zhongfang Li +5 位作者 Wenjie Duan Peng Sun Jigang Wang Qiang Liu Lei Zhang Yanqiong Zhuang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期41-53,I0002,共14页
The bifunctional oxygen catalyst is essential for zinc-air batteries(ZABs).Here,an efficient bifunctional oxygen catalyst,PPcFeCo/3D-G,is obtained throughπ-πinteraction between the conjugated polymerized iron-cobalt... The bifunctional oxygen catalyst is essential for zinc-air batteries(ZABs).Here,an efficient bifunctional oxygen catalyst,PPcFeCo/3D-G,is obtained throughπ-πinteraction between the conjugated polymerized iron-cobalt phthalocyanine(PPcFeCo)with excellent thermal stability and three-dimensional graphene(3D-G).The bimetallic synergistic effect of PPcFeCo,verified by DFT(Density functional theory)calculation,andπ-πinteractions enhances the catalytic activity and durability of the PPcFeCo/3D-G.Regarding electrochemical performance,the PPcFeCo/3D-G with a high electron transfer number(3.98,@0.768 V vs.RHE)has excellent half-wave potential(E_(1/2)=0.890 V vs.RHE)and exhibits outstanding reversibility(ΔE=0.700 V,ΔE=Ej=10-E_(1/2)).The liquid ZAB(LZAB)employed PPcFeCo/3D-G displays a high power density(222 m W cm^(-2)),a specific capacity(792 m A h g-1),and excellent durability(120 h).This work has guiding significance for the preparation of high-efficiency bifunctional catalysts. 展开更多
关键词 Zn-airbattery Bifunctional oxygen catalysts Polymerized iron-cobalt phthalocyanine bimetallic synergy π-πinteraction
在线阅读 下载PDF
Bimetallic catalysts as electrocatalytic cathode materials for the oxygen reduction reaction in microbial fuel cell:A review 被引量:2
15
作者 Ke Zhao Yuanxiang Shu +1 位作者 Fengxiang Li Guosong Peng 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1043-1070,共28页
Microbial fuel cell(MFC) is one synchronous power generation device for wastewater treatment that takes into account environmental and energy issues, exhibiting promising potential. Sluggish oxygen reduction reaction(... Microbial fuel cell(MFC) is one synchronous power generation device for wastewater treatment that takes into account environmental and energy issues, exhibiting promising potential. Sluggish oxygen reduction reaction(ORR) kinetics on the cathode remains by far the most critical bottleneck hindering the practical application of MFC. An ideal cathode catalyst should possess excellent ORR activity, stability, and costeffectiveness, experiments have demonstrated that bimetallic catalysts are one of the most promising ORR catalysts currently. Based on this, this review mainly analyzes the reaction mechanism(ORR mechanisms, synergistic effects), advantages(combined with characterization technologies), and typical synthesis methods of bimetallic catalysts, focusing on the application effects of early Pt-M(M = Fe, Co, and Ni) alloys to bifunctional catalysts in MFC, pointing out that the main existing challenges remain economic analysis, long-term durability and large-scale application, and looking forward to this. At last, the research trend of bimetallic catalysts suitable for MFC is evaluated, and it is considered that the development and research of metal-organic framework(MOF)-based bimetallic catalysts are still worth focusing on in the future, intending to provide a reference for MFC to achieve energy-efficient wastewater treatment. 展开更多
关键词 bimetallic catalysts Oxygen reduction reaction Microbial fuel cell Wastewater treatment Power generation
在线阅读 下载PDF
Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane 被引量:1
16
作者 Jaylin Sasson Bitters Tina He +3 位作者 Elizabeth Nestler Sanjaya D.Senanayake Jingguang G.Chen Cheng Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期124-142,共19页
Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO_(2)) and methane(CH_(4)) into syngas(a mixture of hydrogen, H_(2), and carbon monoxide, CO), which can then be used to produce a wide range of... Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO_(2)) and methane(CH_(4)) into syngas(a mixture of hydrogen, H_(2), and carbon monoxide, CO), which can then be used to produce a wide range of products by means of Fischer–Tropsch synthesis. DRM has gained much attention as a means of mitigating damage from anthropogenic greenhouse gas(GHGs) emissions to the environment and instead utilizing these gases as precursors for value-added chemicals or to synthesize sustainable fuels and chemicals. Carbon deposition or coke formation, a primary cause of catalyst deactivation, has proven to be a major challenge in the development of DRM catalysts. The use of nickel-and cobalt-based catalysts has been extensively explored for DRM for their high activity and low cost but suffer from poor stability due to coke formation that has hindered their commercialization. Numerous articles have reviewed the various aspects of catalyst deactivation and strategies for mitigation, but few has focused on the benefit of bimetallic catalysts for mitigating coke formation. Bimetallic catalysts, often improve the catalytic stability over their monometallic counterparts due to synergistic effects resulting from two metal-tometal interactions. This review will cover DRM literature for various bimetallic catalyst systems, including the effect of supports and promoters, on the mitigation of carbonaceous deactivation. 展开更多
关键词 Dry reforming of methane Carbon dioxide bimetallic catalysts Coke formation catalyst stability
在线阅读 下载PDF
Synergetic bimetallic catalysts:A remarkable platform for efficient conversion of CO_(2) to high value-added chemicals 被引量:1
17
作者 Jundie Hu Fengyi Yang +3 位作者 Jiafu Qu Yahui Cai Xiaogang Yang Chang Ming Li 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期162-191,I0006,共31页
Carbon dioxide reduction reaction(CO_(2)RR) represents an efficient approach to achieving carbon neutrality and simultaneously generating clean energy.However,the strong stability of CO_(2) molecules and the diversity... Carbon dioxide reduction reaction(CO_(2)RR) represents an efficient approach to achieving carbon neutrality and simultaneously generating clean energy.However,the strong stability of CO_(2) molecules and the diversity of products pose significant challenges.As an emerging material,bimetallic catalysts have been widely reported for their unique advantages,such as tunable electronic structures,suitable adsorption/desorption of CO_(2) and intermediates,and optimizable d-band centers of active sites through bimetallic synergy.These catalysts provide a remarkable platform for converting CO_(2) into high value-added chemicals.This review comprehensively summarizes recent research advances in bimetallic catalysts for CO_(2)RR.Firstly,the challenges associated with CO_(2)RR,including activity and selectivity are analyzed,followed by a discussion on the unique advantages of bimetallic catalysts.Next,their synthesis strategies are categorized into dual-atom site catalysts(DACs),bimetallic nanoparticles and nanoclusters,binary metal semiconductors,and layered double hydroxides(LDHs).Additionally,advanced characterization techniques of bimetallic catalysts and their applications in CO_(2)RR are thoroughly introduced.Finally,the prospects and challenges for the application of bimetallic materials are highlighted.This review aims to provide inspiration for CO_(2)RR into high-value chemicals and shed light on the research of bimetallic materials. 展开更多
关键词 CATALYSIS Carbon dioxide bimetallic Dual-atom site catalysts SYNERGY
在线阅读 下载PDF
A Highly Efficient and Selective Water-Soluble Bimetallic Catalyst for Hydrogenation of Chloronitrobenzene to Chloroaniline 被引量:1
18
作者 Zhou Yafen Yang Wenjuan +2 位作者 Zhou Limei Wang Manman Ma Xiaoyan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2015年第2期26-31,共6页
Selective hydrogenation of chloronitrobenzene(CNB) to chloroaniline(CAN) catalyzed by water-soluble Ru/Pt bimetallic catalyst in an aqueous-organic biphasic system was studied. It was found that the catalytic activity... Selective hydrogenation of chloronitrobenzene(CNB) to chloroaniline(CAN) catalyzed by water-soluble Ru/Pt bimetallic catalyst in an aqueous-organic biphasic system was studied. It was found that the catalytic activity increased obviously due to the addition of platinum. Ru/Pt bimetallic catalysts exhibited a strong synergistic effect when the molar ratio of Pt was in the range of 5%—80%. Under the mild conditions including a temperature of 25 ℃, a hydrogen pressure of 1.0 MPa and a Pt molar ratio of 20%, the conversion of p-chloronitrobenzene(p-CNB) reached 99.9%, with the selectivity to p-chloroaniline(p-CAN) equating to 99.4%. The Ru/Pt catalyst also showed high activity and selectivity for the hydrogenation of other chloro- and dichloro-nitrobenzenes with different substituted positions. In addition, the catalyst can be recycled five times without significant loss of activity. 展开更多
关键词 water-soluble bimetallic catalyst HYDROGENATION CHLORONITROBENZENE CHLOROANILINE
在线阅读 下载PDF
Formic acid fractionation towards highly efficient cellulose-derived PdAg bimetallic catalyst for H_(2) evolution 被引量:1
19
作者 Yanyan Yu Huanghui Xu +2 位作者 Hongfei Yu Lihong Hu Yun Liu 《Green Energy & Environment》 SCIE EI CSCD 2022年第1期172-183,共12页
The present work,in which cellulose isolated from formic acid fractionation(FAC)is decorated with polyetherimide(PEI)to attain highly efficient cellulose-derived PdAgbimetallic catalyst(PdAg-PEI-FAC),has been investig... The present work,in which cellulose isolated from formic acid fractionation(FAC)is decorated with polyetherimide(PEI)to attain highly efficient cellulose-derived PdAgbimetallic catalyst(PdAg-PEI-FAC),has been investigated,and the catalyst properties are characterized by XRD,XPS,BET,ICP-AES and HAADF-STEM.The as-obtained Pd_(3.75)Ag_(3.75)-PEI-FAC exhibits excellent catalytic performance for H_(2)evolution from a sodium formate-free formic acid(FA)aqueous medium at ambient temperature and the turnover frequency(TOF)reaches a high value of 2875 h^(-1)which is superior to most of the previously reported Pd-based heterogeneous catalysts supported on a carbon matrix in the literature.The remarkable catalytic activities of PdAg-PEI-FAC result from high dispersion Pd and synergistic effects between the PdAg bimetallic system.Furthermore,the amide(-NH)group in PEI coated on cellulose acting as a proton scavenger efficiently improves the catalytic property of catalyst.In addition,the critical factors affecting H;release,such as FA concentration,reaction temperature,PdAg compositions and support matrix type,are also evaluated.Based on the experimental results,the probable three-step mechanism of H_(2)evolution from FA over Pd_(3.75)Ag_(3.75)-PEI-FAC is proposed.In the end,the activation energy(Ea)of Pd_(3.75)Ag_(3.75)-PEI-FAC catalyst is calculated to 53.97 kJ mol^(-1),and this catalyst shows unique robustness and satisfactory re-usability with no loss of catalytic activity after five recycles.The findings in this work provide a novel routine from lignocellulose fractionation towards cellulose-derived catalyst for H_(2)evolution. 展开更多
关键词 Formic acid fractionation Cellulose modification Cellulose-derived PdAg bimetallic catalyst Hydrogen generation Mechanism
在线阅读 下载PDF
Reactive ball-milling synthesis of Co-Fe bimetallic catalyst for efficient hydrogenation of carbon dioxide to value-added hydrocarbons 被引量:1
20
作者 Haipeng Chen Chenwei Wang +5 位作者 Mengyang Zheng Chenlei Liu Wenqiang Li Qingfeng Yang Shixue Zhou Xun Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期210-218,共9页
Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-mi... Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons. 展开更多
关键词 Reactive ball milling Co-Fe bimetallic catalyst Carbon dioxide Value-added hydrocarbon C–C coupling reaction
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部