This paper presents a general framework for the study of relation-based intuitionistic fuzzy rough sets determined by two intuitionistic fuzzy implicators.By employing two intuitionistic fuzzy implicators I and J,I -l...This paper presents a general framework for the study of relation-based intuitionistic fuzzy rough sets determined by two intuitionistic fuzzy implicators.By employing two intuitionistic fuzzy implicators I and J,I -lower and J-upper approximations of intuitionistic fuzzy sets with respect to an intuitionistic fuzzy approximation space are first defined.Properties of(I,J) -intuitionistic fuzzy rough approximation operators are then examined.The connections between special types of intuitionistic fuzzy relations and properties of (I,J)-intuitionistic fuzzy approximation operators are also established.展开更多
The conceptions of the knowledge screen generated by S-rough sets are given: f- screen and - screen , and then puts forward - filter theorem, - filter theorem of knowledge. At last, the applications of knowledge separ...The conceptions of the knowledge screen generated by S-rough sets are given: f- screen and - screen , and then puts forward - filter theorem, - filter theorem of knowledge. At last, the applications of knowledge separation are given according to - screen and - screen.展开更多
Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with resp...Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with respect to the same attribute. Based on the graded probabilistic dominance relation, the pairwise comparison information table is defined. The global preferences of the decision maker can be seen as a rough binary relation. The present paper proposes to approximate this preference relation by means of the graded probabilistic dominance relation with respect to the subsets of attributes. At last, the method is illustrated by an example.展开更多
To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totali...To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totality sample space, two algorithms are proposed on the basis of the data analysis method in rough sets theory: information system discrete algorithm (algorithm 1) and samples representatives judging algorithm (algorithm 2). On the principle of the farthest distance, algorithm 1 transforms continuous data into discrete form which could be transacted by rough sets theory. Taking the approximate precision as a criterion, algorithm 2 chooses the sample space with a good representative. Hence, the clustering sample set in inducing and computing optimal dividing matrix can be achieved. Several theorems are proposed to provide strict theoretic foundations for the execution of the algorithm model. An applied example based on the new algorithm model is given, whose result verifies the feasibility of this new algorithm model.展开更多
Covering rough sets are improvements of traditional rough sets by considering cover of universe instead of partition.In this paper,we develop several measures based on evidence theory to characterize covering rough se...Covering rough sets are improvements of traditional rough sets by considering cover of universe instead of partition.In this paper,we develop several measures based on evidence theory to characterize covering rough sets.First,we present belief and plausibility functions in covering information systems and study their properties.With these measures we characterize lower and upper approximation operators and attribute reductions in covering information systems and decision systems respectively.With these discussions we propose a basic framework of numerical characterizations of covering rough sets.展开更多
This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets ...This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets models under the equivalence relation in crisp sets.That extends the classical rough set defined by Pawlak.展开更多
Since the introduction of rough sets in 1982 by Professor Zdzisaw Pawlak, we have witnessed great advances in both theory and applications. Rough set theory is closely related to knowledge technology in a variety of...Since the introduction of rough sets in 1982 by Professor Zdzisaw Pawlak, we have witnessed great advances in both theory and applications. Rough set theory is closely related to knowledge technology in a variety of forms such as knowledge discovery, approximate reasoning, intelligent and multiagent system design, knowledge intensive computations. The cutting-edge knowledge technologies have great impact on learning, pattern recognition, machine intelligence and automation of acquisition, transformation, communication, exploration and exploitation of knowledge. A principal thrust of such technologies is the utilization of methodologies that facilitate knowledge processing. To present the state-of-the-art scientific results, encourage academic and industrial interaction, and promote collaborative research in rough sets and knowledge technology worldwide, the 3rd International Conference on Rough Sets and Knowledge Technology will be held in Chengdu, China, May 17~19, 2008. It will provide a forum for researchers to discuss new results and exchange ideas, following the successful RSKT'06 (Chongqing, China) and JRS'07 (RSKT'07 together with RSFDGrC'07) (Toronto, Canada).展开更多
1 Introduction In[5]we investigated the significance of some truth-functional three valued logics of ill-known sets described by pairs of disjoint(or pairs of nested) subsets.In particular,we referred to the case of r...1 Introduction In[5]we investigated the significance of some truth-functional three valued logics of ill-known sets described by pairs of disjoint(or pairs of nested) subsets.In particular,we referred to the case of rough sets showing that if from a mathematical standpoint we obtain sound results,the interpretation with respect展开更多
This paper is a purely mathematical one dealing with a common possible foundation of Fuzzy Set Theory and Rough Set Theory.It begins with a generalization of Obtulowicz's paper,rough sets and Heyting algebra value...This paper is a purely mathematical one dealing with a common possible foundation of Fuzzy Set Theory and Rough Set Theory.It begins with a generalization of Obtulowicz's paper,rough sets and Heyting algebra valued sets,published in Bull.Polish Acad Sc.(math),198.In this paper Obtulowicz proposes a special subcategory展开更多
A new method for translating a fuzzy rough set to a fuzzy set is introduced and the fuzzy approximation of a fuzzy rough set is given. The properties of the fuzzy approximation of a fuzzy rough set are studied and a f...A new method for translating a fuzzy rough set to a fuzzy set is introduced and the fuzzy approximation of a fuzzy rough set is given. The properties of the fuzzy approximation of a fuzzy rough set are studied and a fuzzy entropy measure for fuzzy rough sets is proposed. This measure is consistent with similar considerations for ordinary fuzzy sets and is the result of the fuzzy approximation of fuzzy rough sets.展开更多
Based on rough similarity degree of rough sets and close degree of fuzzy sets, the definitions of rough similarity degree and rough close degree of rough fuzzy sets are given, which can be used to measure the similar ...Based on rough similarity degree of rough sets and close degree of fuzzy sets, the definitions of rough similarity degree and rough close degree of rough fuzzy sets are given, which can be used to measure the similar degree between two rough fuzzy sets. The properties and theorems are listed. Using the two new measures, the method of clustering in the rough fuzzy system can be obtained. After clustering, the new fuzzy sample can be recognized by the principle of maximal similarity degree.展开更多
In rough communication, because each agent has a different language and cannot provide precise communication to each other, the concept translated among multi-agents will loss some information and this results in a le...In rough communication, because each agent has a different language and cannot provide precise communication to each other, the concept translated among multi-agents will loss some information and this results in a less or rougher concept. With different translation sequences, the problem of information loss is varied. To get the translation sequence, in which the jth agent taking part in rough communication gets maximum information, a simulated annealing algorithm is used. Analysis and simulation of this algorithm demonstrate its effectiveness.展开更多
To study the problem of knowledge translation in fuzzy approximation spaces, the concept of rough communication of crisp set in fuzzy approximation spaces is proposed. In a rough communication of crisp set in fuzzy ap...To study the problem of knowledge translation in fuzzy approximation spaces, the concept of rough communication of crisp set in fuzzy approximation spaces is proposed. In a rough communication of crisp set in fuzzy approximation spaces, the problem of uncertainty exists, for each agent has a different language and cannot provide precise communication to each other. By means of some concepts, such as CF rough communication cut, which is a bridge between fuzzy concept and crisp concept, cut analysis of CF rough communication is made, and the relation theorem between CF rough communication and rough communication of crisp concept is obtained. Finally, in order to give an intuitive analysis of the relation between CF rough communication and rough communication of crisp concept, an example is given.展开更多
With granular computing point of view,this paper first presents a novel rough set model with a multigranulation view,called pessimistic rough decision,where set approximations are defined through using consistent gran...With granular computing point of view,this paper first presents a novel rough set model with a multigranulation view,called pessimistic rough decision,where set approximations are defined through using consistent granules among multiple granular spaces on the universe.Then,we investigate several important properties of the pessimistic rough decision model.With introduction of the rough set model,we have developed two types of multigranulation rough sets(MGRS):optimistic rough decision and pessimistic rough decision. These multigranulation rough set models provide a kind of effective approach for problem solving in the context of multi granulations.展开更多
In rough communication, because each agent has a different language and can not provide precise communication to each other, the concept translated among multi-agents will loss some information, and this results in a ...In rough communication, because each agent has a different language and can not provide precise communication to each other, the concept translated among multi-agents will loss some information, and this results in a less or rougher concept. With different translation sequences the amount of the missed knowledge is varied. The λ-optimal translation sequence of rough communication, which concerns both every agent and the last agent taking part in rough communication to get information as much as he (or she) can, is given. In order to get the λ-optimal translation sequence, a genetic algorithm is used. Analysis and simulation of the algorithm demonstrate the effectiveness of the approach.展开更多
The concept of rough communication based on both-branch fuzzy set is proposed, in which the loss of information may exist, for each agent there has a different language and can not provide precise communication to eac...The concept of rough communication based on both-branch fuzzy set is proposed, in which the loss of information may exist, for each agent there has a different language and can not provide precise communication to each other. The method of information measure in a rough communication based on both-branch fuzzy set is proposed. By using some concepts, such as |α|-both-branch rough communication cut, the relation theorem between rough communication based on both-branch fuzzy concept and rough communication based on classical concept is obtained. Finally, an example of rough communication based on both-branch fuzzy set is given.展开更多
The problem considered in this paper is how to detect the degree of similarity in the content of digital images useful in image retrieval,i.e.,to what extent is the content of a query image similar to content of other...The problem considered in this paper is how to detect the degree of similarity in the content of digital images useful in image retrieval,i.e.,to what extent is the content of a query image similar to content of other images.The solution to this problem results from the detection of subsets that are rough sets contained in covers of digital images determined by perceptual tolerance relations(PTRs).Such relations are defined within the context of perceptual representative spaces that hearken back to work by J.H.Poincare on representative spaces as models of physical continua.Classes determined by a PTR provide content useful in content-based image retrieval(CBIR).In addition,tolerance classes provide a means of determining when subsets of image covers are tolerance rough sets(TRSs).It is the nearness of TRSs present in image tolerance spaces that provide a promising approach to CBIR,especially in cases such as satellite images or aircraft identification where there are subtle differences between pairs of digital images,making it difficult to quantify the similarities between such images.The contribution of this article is the introduction of the nearness of tolerance rough sets as an effective means of measuring digital image similarities and,as a significant consequence,successfully carrying out CBIR.展开更多
In granular computing granular structures represent knowledge on universe,in this paper several important granular structures are considered.In a general granular structure the notions of interior point, accumulation ...In granular computing granular structures represent knowledge on universe,in this paper several important granular structures are considered.In a general granular structure the notions of interior point, accumulation point and boundary point etc are proposed,by use of these notions and referring to topological method,the lower and upper approximations of a subset of universe are defined such that they are one kind of generalization of the existing approximations based on some special granular structure.Basic properties of new rough set approximations are investigated.Furthermore,granular structures on universe are characterized by the lower and upper approximation operators.展开更多
Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been ...Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been proven that computing minimal reduc- tion of decision tables is a non-derterministic polynomial (NP)-hard problem. A new cooperative extended attribute reduction algorithm named Co-PSAR based on improved PSO is proposed, in which the cooperative evolutionary strategy with suitable fitness func- tions is involved to learn a good hypothesis for accelerating the optimization of searching minimal attribute reduction. Experiments on Benchmark functions and University of California, Irvine (UCI) data sets, compared with other algorithms, verify the superiority of the Co-PSAR algorithm in terms of the convergence speed, efficiency and accuracy for the attribute reduction.展开更多
To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to ...To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV).展开更多
基金supported by grants from the National Natural Science Foundation of China(Nos.61075120, 60673096 and 60773174)the Natural Science Foundation of Zhejiang Province in China(No.Y107262).
文摘This paper presents a general framework for the study of relation-based intuitionistic fuzzy rough sets determined by two intuitionistic fuzzy implicators.By employing two intuitionistic fuzzy implicators I and J,I -lower and J-upper approximations of intuitionistic fuzzy sets with respect to an intuitionistic fuzzy approximation space are first defined.Properties of(I,J) -intuitionistic fuzzy rough approximation operators are then examined.The connections between special types of intuitionistic fuzzy relations and properties of (I,J)-intuitionistic fuzzy approximation operators are also established.
文摘The conceptions of the knowledge screen generated by S-rough sets are given: f- screen and - screen , and then puts forward - filter theorem, - filter theorem of knowledge. At last, the applications of knowledge separation are given according to - screen and - screen.
文摘Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with respect to the same attribute. Based on the graded probabilistic dominance relation, the pairwise comparison information table is defined. The global preferences of the decision maker can be seen as a rough binary relation. The present paper proposes to approximate this preference relation by means of the graded probabilistic dominance relation with respect to the subsets of attributes. At last, the method is illustrated by an example.
文摘To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totality sample space, two algorithms are proposed on the basis of the data analysis method in rough sets theory: information system discrete algorithm (algorithm 1) and samples representatives judging algorithm (algorithm 2). On the principle of the farthest distance, algorithm 1 transforms continuous data into discrete form which could be transacted by rough sets theory. Taking the approximate precision as a criterion, algorithm 2 chooses the sample space with a good representative. Hence, the clustering sample set in inducing and computing optimal dividing matrix can be achieved. Several theorems are proposed to provide strict theoretic foundations for the execution of the algorithm model. An applied example based on the new algorithm model is given, whose result verifies the feasibility of this new algorithm model.
基金supported by a grant of NSFC(70871036)a grant of National Basic Research Program of China(2009CB219801-3)
文摘Covering rough sets are improvements of traditional rough sets by considering cover of universe instead of partition.In this paper,we develop several measures based on evidence theory to characterize covering rough sets.First,we present belief and plausibility functions in covering information systems and study their properties.With these measures we characterize lower and upper approximation operators and attribute reductions in covering information systems and decision systems respectively.With these discussions we propose a basic framework of numerical characterizations of covering rough sets.
基金supported by grants from the National Natural Science Foundation of China(Nos.10971185 and 10971186)the Natural Science Foundation of Fujiang Province in China(No.2008F5066).
文摘This paper combines interval-valued intuitionistic fuzzy sets and rough sets.It studies rougheness in interval-valued intuitionistic fuzzy sets and proposes one kind of interval-valued intuitionistic fuzzy-rough sets models under the equivalence relation in crisp sets.That extends the classical rough set defined by Pawlak.
文摘Since the introduction of rough sets in 1982 by Professor Zdzisaw Pawlak, we have witnessed great advances in both theory and applications. Rough set theory is closely related to knowledge technology in a variety of forms such as knowledge discovery, approximate reasoning, intelligent and multiagent system design, knowledge intensive computations. The cutting-edge knowledge technologies have great impact on learning, pattern recognition, machine intelligence and automation of acquisition, transformation, communication, exploration and exploitation of knowledge. A principal thrust of such technologies is the utilization of methodologies that facilitate knowledge processing. To present the state-of-the-art scientific results, encourage academic and industrial interaction, and promote collaborative research in rough sets and knowledge technology worldwide, the 3rd International Conference on Rough Sets and Knowledge Technology will be held in Chengdu, China, May 17~19, 2008. It will provide a forum for researchers to discuss new results and exchange ideas, following the successful RSKT'06 (Chongqing, China) and JRS'07 (RSKT'07 together with RSFDGrC'07) (Toronto, Canada).
文摘1 Introduction In[5]we investigated the significance of some truth-functional three valued logics of ill-known sets described by pairs of disjoint(or pairs of nested) subsets.In particular,we referred to the case of rough sets showing that if from a mathematical standpoint we obtain sound results,the interpretation with respect
文摘This paper is a purely mathematical one dealing with a common possible foundation of Fuzzy Set Theory and Rough Set Theory.It begins with a generalization of Obtulowicz's paper,rough sets and Heyting algebra valued sets,published in Bull.Polish Acad Sc.(math),198.In this paper Obtulowicz proposes a special subcategory
基金the National Natural Science Foundation of China (60364001, 70461001)Hainan ProvincialNatural Science Foundation of China (80401).
文摘A new method for translating a fuzzy rough set to a fuzzy set is introduced and the fuzzy approximation of a fuzzy rough set is given. The properties of the fuzzy approximation of a fuzzy rough set are studied and a fuzzy entropy measure for fuzzy rough sets is proposed. This measure is consistent with similar considerations for ordinary fuzzy sets and is the result of the fuzzy approximation of fuzzy rough sets.
基金the Fujian Provincial Natural Science Foundation of China (Z0510492006J0391)
文摘Based on rough similarity degree of rough sets and close degree of fuzzy sets, the definitions of rough similarity degree and rough close degree of rough fuzzy sets are given, which can be used to measure the similar degree between two rough fuzzy sets. The properties and theorems are listed. Using the two new measures, the method of clustering in the rough fuzzy system can be obtained. After clustering, the new fuzzy sample can be recognized by the principle of maximal similarity degree.
基金the Natural Science Foundation of Shandong Province (Y2006A12)the Scientific ResearchDevelopment Project of Shandong Provincial Education Department(J06P01)the Doctoral Foundation of University of Jinan(B0633).
文摘In rough communication, because each agent has a different language and cannot provide precise communication to each other, the concept translated among multi-agents will loss some information and this results in a less or rougher concept. With different translation sequences, the problem of information loss is varied. To get the translation sequence, in which the jth agent taking part in rough communication gets maximum information, a simulated annealing algorithm is used. Analysis and simulation of this algorithm demonstrate its effectiveness.
基金supported by the Natural Science Foundation of Shandong Province (Y2006A12)the Scientific Research Development Project of Shandong Provincial Education Department (J06P01)+2 种基金the Science and Technology Foundation of Universityof Jinan (XKY0808 XKY0703)the Doctoral Foundation of University of Jinan (B0633).
文摘To study the problem of knowledge translation in fuzzy approximation spaces, the concept of rough communication of crisp set in fuzzy approximation spaces is proposed. In a rough communication of crisp set in fuzzy approximation spaces, the problem of uncertainty exists, for each agent has a different language and cannot provide precise communication to each other. By means of some concepts, such as CF rough communication cut, which is a bridge between fuzzy concept and crisp concept, cut analysis of CF rough communication is made, and the relation theorem between CF rough communication and rough communication of crisp concept is obtained. Finally, in order to give an intuitive analysis of the relation between CF rough communication and rough communication of crisp concept, an example is given.
基金supported by grants from the National Natural Science Foundation of China(Nos.60903110, 60773133 and 70971080)the Natural Science Foundation of Shanxi Province in China(Nos.2009021017-1, 2008011038).
文摘With granular computing point of view,this paper first presents a novel rough set model with a multigranulation view,called pessimistic rough decision,where set approximations are defined through using consistent granules among multiple granular spaces on the universe.Then,we investigate several important properties of the pessimistic rough decision model.With introduction of the rough set model,we have developed two types of multigranulation rough sets(MGRS):optimistic rough decision and pessimistic rough decision. These multigranulation rough set models provide a kind of effective approach for problem solving in the context of multi granulations.
基金supported by the National Natural Science Foundation of China(61070241)the Natural Science Foundation of Shandong Province(ZR2010FM035)+1 种基金the Science and Technology Foundation of University of Jinan(XKY1031XKY0808)
文摘In rough communication, because each agent has a different language and can not provide precise communication to each other, the concept translated among multi-agents will loss some information, and this results in a less or rougher concept. With different translation sequences the amount of the missed knowledge is varied. The λ-optimal translation sequence of rough communication, which concerns both every agent and the last agent taking part in rough communication to get information as much as he (or she) can, is given. In order to get the λ-optimal translation sequence, a genetic algorithm is used. Analysis and simulation of the algorithm demonstrate the effectiveness of the approach.
基金supported by the National Natural Science Foundation of China (61070241)the Natural Science Foundation of Shandong Province (ZR2010 FM035)the Science Research Foundation of University of Jinan (XKYK31)
文摘The concept of rough communication based on both-branch fuzzy set is proposed, in which the loss of information may exist, for each agent there has a different language and can not provide precise communication to each other. The method of information measure in a rough communication based on both-branch fuzzy set is proposed. By using some concepts, such as |α|-both-branch rough communication cut, the relation theorem between rough communication based on both-branch fuzzy concept and rough communication based on classical concept is obtained. Finally, an example of rough communication based on both-branch fuzzy set is given.
基金supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) research grants 194376 and 185986Manitoba Centre of Excellence Fund(MCEF) grant and Canadian Network Centre of Excellence(NCE) and Canadian Arthritis Network(CAN) grant SRI-BIO-05.
文摘The problem considered in this paper is how to detect the degree of similarity in the content of digital images useful in image retrieval,i.e.,to what extent is the content of a query image similar to content of other images.The solution to this problem results from the detection of subsets that are rough sets contained in covers of digital images determined by perceptual tolerance relations(PTRs).Such relations are defined within the context of perceptual representative spaces that hearken back to work by J.H.Poincare on representative spaces as models of physical continua.Classes determined by a PTR provide content useful in content-based image retrieval(CBIR).In addition,tolerance classes provide a means of determining when subsets of image covers are tolerance rough sets(TRSs).It is the nearness of TRSs present in image tolerance spaces that provide a promising approach to CBIR,especially in cases such as satellite images or aircraft identification where there are subtle differences between pairs of digital images,making it difficult to quantify the similarities between such images.The contribution of this article is the introduction of the nearness of tolerance rough sets as an effective means of measuring digital image similarities and,as a significant consequence,successfully carrying out CBIR.
基金supported by grants from the National Natural Science Foundation of China(Nos.11071284 and 61075120)the Natural Science Foundation of Zhejiang Province in China(No.Y107262).
文摘In granular computing granular structures represent knowledge on universe,in this paper several important granular structures are considered.In a general granular structure the notions of interior point, accumulation point and boundary point etc are proposed,by use of these notions and referring to topological method,the lower and upper approximations of a subset of universe are defined such that they are one kind of generalization of the existing approximations based on some special granular structure.Basic properties of new rough set approximations are investigated.Furthermore,granular structures on universe are characterized by the lower and upper approximation operators.
基金supported by the National Natural Science Foundation of China (60873069 61171132)+3 种基金the Jiangsu Government Scholarship for Overseas Studies (JS-2010-K005)the Funding of Jiangsu Innovation Program for Graduate Education (CXZZ11 0219)the Open Project Program of Jiangsu Provincial Key Laboratory of Computer Information Processing Technology (KJS1023)the Applying Study Foundation of Nantong (BK2011062)
文摘Particle swarm optimization (PSO) is a new heuristic algorithm which has been applied to many optimization problems successfully. Attribute reduction is a key studying point of the rough set theory, and it has been proven that computing minimal reduc- tion of decision tables is a non-derterministic polynomial (NP)-hard problem. A new cooperative extended attribute reduction algorithm named Co-PSAR based on improved PSO is proposed, in which the cooperative evolutionary strategy with suitable fitness func- tions is involved to learn a good hypothesis for accelerating the optimization of searching minimal attribute reduction. Experiments on Benchmark functions and University of California, Irvine (UCI) data sets, compared with other algorithms, verify the superiority of the Co-PSAR algorithm in terms of the convergence speed, efficiency and accuracy for the attribute reduction.
基金This project was supported by the National Basic Research Programof China (2001CB309403)
文摘To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV).