期刊文献+
共找到100篇文章
< 1 2 5 >
每页显示 20 50 100
The role of isolators in two-phase kerosene/air rotating detonation engines
1
作者 Wenbo Cao Fang Wang +1 位作者 Chunsheng Weng Huangwei Zhang 《Defence Technology(防务技术)》 2025年第7期260-274,共15页
In this study, the three-dimensional non-premixed two-phase kerosene/air rotating detonation engines with different isolator configurations and throat area ratios are simulated by the Eulerian-Lagrangian method. The e... In this study, the three-dimensional non-premixed two-phase kerosene/air rotating detonation engines with different isolator configurations and throat area ratios are simulated by the Eulerian-Lagrangian method. The effects of the divergence, straight, and convergence isolators on the rotating detonation wave dynamics and the upstream oblique shock wave propagation mechanism are analyzed. The differences in the rotating detonation wave behaviors between ground and flight operations are clarified.The results indicate that the propagation regimes of the upstream oblique shock wave depend on the isolator configurations and operation conditions. With a divergence isolator, the airflow is accelerated throughout the isolator and divergence section, leading to a maximum Mach number(~1.8) before the normal shock. The total pressure loss reaches the largest, and the detonation pressure drops. The upstream oblique shock wave can be suppressed within the divergence section with the divergence isolator.However, for the straight and convergence isolators, the airflow in the isolator with a larger ψ_(1)(0.3 and0.4) can suffer from the disturbance of the upstream oblique shock wave. The critical incident angle is around 39° at ground operation conditions. The upstream oblique shock wave tends to be suppressed when the engine operates under flight operation conditions. The critical pressure ratio β_(cr0) is found to be able to help in distinguishing the propagation regimes of the upstream oblique shock wave. Slightly below or above the β_(cr0) can obtain different marginal propagation results. The high-speed airflow in the divergence section affects the fuel droplet penetration distance, which deteriorates the reactant mixing and the detonation area. Significant detonation velocity deficits are observed and the maximum velocity deficit reaches 26%. The results indicate the engine channel design should adopt different isolator configurations based on the purpose of total pressure loss or disturbance suppression. This study can provide useful guidance for the channel design of a more complete two-phase rotating detonation engine. 展开更多
关键词 rotating detonation TWO-PHASE ISOLATOR Upstream oblique shock wave
在线阅读 下载PDF
Field system-level calibration method for accelerometer considering nonlinear coefficients
2
作者 WU Haotian YU Ruihang +2 位作者 CAO Juliang MA Caixia YANG Bainan 《Journal of Systems Engineering and Electronics》 2025年第3期814-824,共11页
In order to get rid of the dependence on high-precision centrifuges in accelerometer nonlinear coefficients calibration,this paper proposes a system-level calibration method for field condition.Firstly,a 42-dimension ... In order to get rid of the dependence on high-precision centrifuges in accelerometer nonlinear coefficients calibration,this paper proposes a system-level calibration method for field condition.Firstly,a 42-dimension Kalman filter is constructed to reduce impact brought by turntable.Then,a biaxial rotation path is designed based on the accelerometer output model,including orthogonal 22 positions and tilt 12 positions,which enhances gravity excitation on nonlinear coefficients of accelerometer.Finally,sampling is carried out for calibration and further experiments.The results of static inertial navigation experiments lasting 4000 s show that compared with the traditional method,the proposed method reduces the position error by about 390 m. 展开更多
关键词 ACCELEROMETER nonlinear coefficient system-level calibration rotation path
在线阅读 下载PDF
The Development of Hi-Speed Punching System Using A Couple of Rotating Bodies
3
作者 Shinichi Taya Keiichi Shimizu 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期116-117,共2页
Punched steel sheets (metal sheets or foils) as thi n as 0.1mm are quite useful in the field of filters and various precision instrume nts. Thus, we have to develop more accurate and speedy techniques for punching t h... Punched steel sheets (metal sheets or foils) as thi n as 0.1mm are quite useful in the field of filters and various precision instrume nts. Thus, we have to develop more accurate and speedy techniques for punching t hin sheets. The traditional punching method uses an up-down pressing motion of a punch or a die on a strip of metal. The efficiency of this method is determine d by the speed of the motion. In the case of punching a sequence of tiny holes w ith a few millimeters’ interval, the speed of feeding a strip of metal to the p unching machine cannot exceed only a couple of meters per minute. We have de veloped a new technique for punching tiny holes with a pair of rotating bodies i n order to increase the feeding speed up to 100 meters per minute. Our proposed technique is shown in Fig.1 where the female tool has a round blade and the male tool has an M-shape boss. In addition, the setting of two tools i s alternating. The interference between them cannot occur because the clearance between the front and the back edge of the male tool and the female tool in the rotating direction becomes infinite in this configuration. An appropriate cleara nce is given for the thickness of the sheet between the side edge of the male to ol and the female tool. The punching itself is done by shearing. The side edge o f the male tool does contact with the female tool, but they cannot be interferin g. Our technique has another advantage to the traditional up-down pressing mach ine where the stamped out chips are hard to be discharged. It is quite easy in o ur proposed technique. Fig.2, 3 show a sample of punched material [TPP116A,+39mm88mm,Y,PZ#]Fig.1 The configuration of the punching parts using the sequential punching system.[TPP116B,+43mm155mm,X,BP#]Fig.2 A sample of punched material using the continuous punch ing lineFig.3 A exterior picture of a piece of punched steel foil(coi l) using the continuous punching For our developed high speed punching system, it is shown for (1) the configurat ion of punching tool and the punching mechanism, (2) the influence of male shape on punched hole quality, (3) the outline of continuous punching system, (4) the relation between punching speed and accuracy of hole pitch and hole dimensi on, (5) the mechanical property of punched metal sheet and (6) capability of hig her punching. 展开更多
关键词 The Development of Hi-Speed Punching system Using A Couple of rotating Bodies
在线阅读 下载PDF
Output Voltage Model and Mechanical-Magnetic Design of Magnetostrictive Vibration Energy Harvester with a Rotating Up-Frequency Structure1
4
作者 Huang Wenmei Xue Tianxiang +2 位作者 Feng Xiaobo Weng Ling Li Mingming 《电工技术学报》 EI CSCD 北大核心 2024年第24期7639-7650,共12页
A vibration energy harvester can harvest vibration energy in the environment and convert it into electrical energy to power the sensors in the Internet of Things.Human walking contains high-quality vibration energy,wh... A vibration energy harvester can harvest vibration energy in the environment and convert it into electrical energy to power the sensors in the Internet of Things.Human walking contains high-quality vibration energy,which serves as the energy source for vibration energy harvesters due to its abundant availability,high energy conversion efficiency,and environmental friendliness.It is difficult to harvest human walking vibration due to its low frequency.Converting the low-frequency vibration of human walking into high-frequency vibration has attracted attention.In previous studies,vibration energy harvesters typically increase frequency by raising excitation frequency or inducing free vibration.When walking frequency changes,the up-frequency method of raising the excitation frequency changes the voltage frequency,resulting in the best load resistance change and reducing the output power.The up-frequency method of inducing free vibration does not increase the external excitation frequency,which has relatively low output power.This paper designs a magnetostrictive vibration energy harvester with a rotating up-frequency structure.It consists of a rotating up-frequency structure,a magnetostrictive structure,coils,and bias magnets.The main body of the rotating up-frequency structure comprises a torsion bar and a flywheel with a dumbbell-shaped hole.The magnetostrictive structure includes four magnetostrictive metal sheets spliced by Galfenol and steel sheets.The torsion bar and flywheel interact to convert low-frequency linear vibration into rotating high-frequency excitation vibration of the flywheel.The flywheel plucks the magnetostrictive metal sheet with a high excitation frequency to generate free vibration.The vibration energy harvester increases the excitation frequency while inducing free vibration,which can effectively improve the output power.To characterize the excitation vibration and free vibration,based on the theory of Euler-Bernoulli beam theory,the vibration equation of the magnetostrictive metal sheet after being excited is given.According to the classical machine-magnetic coupling model and the Jiles-Atherton physical model,the relationship between stress and magnetization strength is derived.Combined with Faraday's law of electromagnetic induction,the distributed dynamic output voltage model is established.This model can predict the output voltage at different excitation frequencies.Based on this model,the mechanical-magnetic structural parameter optimization design is carried out.The parameters of the magnetostrictive metal sheet,the bias magnet,and the rotating up-frequency structure are determined.A comprehensive experimental system is established to test the device.The peak-to-peak voltage and output voltage signal by the proposed model are compared.The average relative deviation of the peak-to-peak voltage and the output voltage signal is 4.9%and 8.2%,respectively.The experimental results show that the output power is proportional to the excitation frequency.The optimum load resistance is always 800Ωas the excitation frequency changes,simplifying the impedance-matching process.The maximum peak-to-peak voltage of the device is 58.60 V,the maximum root mean square(RMS)voltage is 9.53 V,and the maximum RMS power is 56.20 mW.The magnetostrictive vibration energy harvester with a rotating up-frequency structure solves the problem of impedance matching,which improves the output power.The proposed distributed dynamic output voltage model can effectively predict the output characteristics.This study can provide structural and theoretical guidance for up-frequency structure vibration energy harvesters for human walking vibration. 展开更多
关键词 Vibration energy harvester MAGNETOSTRICTIVE rotating up-frequency dynamic model free vibration
在线阅读 下载PDF
Dual circularly polarized monostatic STAR antenna with enhanced isolation
5
作者 XIE Mingcong WEI Xizhang +1 位作者 TANG Yanqun HU Dujuan 《Journal of Systems Engineering and Electronics》 2025年第1期73-81,共9页
Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation p... Separated transmit and receive antennas are employed to improve transmit-receive isolation in conventional short-range radars, which greatly increases the antenna size and misaligns of the transmit/receive radiation patterns. In this paper,a dual circularly polarized(CP) monostatic simultaneous transmit and receive(MSTAR) antenna with enhanced isolation is proposed to alleviate the problem. The proposed antenna consists of one sequentially rotating array(SRA), two beamforming networks(BFN), and a combined decoupling structure. The SRA is shared by the transmit and receive to reduce the size of the antenna and to obtain a consistent transmit and receive pattern.The BFN achieve right-hand CP for transmit and left-hand CP for receive. By exploring the combined decoupling structure of uniplanar compact electromagnetic band gap(UC-EBG) and ringshaped defected ground structure(RS-DGS), good transmitreceive isolation is achieved. The proposed antenna prototype is fabricated and experimentally characterized. The simulated and measured results show good agreement. The demonstrate transmit/receive isolation is height than 33 dB, voltage standing wave ratio is lower than 2, axial ratio is lower than 3 dB, and consistent radiation for both transmit and receive is within4.25-4.35 GHz. 展开更多
关键词 dual circularly polarization(CP) monostatic simultaneous transmit and receive(MSTAR) sequential rotation array(SRA) uniplanar compact electromagnetic band gap(UC-EBG) ring-shaped defected ground structure(RS-DGS)
在线阅读 下载PDF
Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation wave 被引量:17
6
作者 Quan Zheng Hao-long Meng +3 位作者 Chun-sheng Weng Yu-wen Wu Wen-kang Feng Ming-liang Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第6期1106-1115,共10页
In order to study the instability propagation characteristics of the liquid kerosene rotating detonation wave(RDW),a series of experimental tests were carried out on the rotating detonation combustor(RDC)with air-heat... In order to study the instability propagation characteristics of the liquid kerosene rotating detonation wave(RDW),a series of experimental tests were carried out on the rotating detonation combustor(RDC)with air-heater.The fuel and oxidizer are room-temperature liquid kerosene and preheated oxygenenriched air,respectively.The experimental tests keep the equivalence ratio of 0.81 and the oxygen mass fraction of 35%unchanged,and the total mass flow rate is maintained at about 1000 g/s,changing the total temperature of the oxygen-enriched air from 620 K to 860 K.Three different types of instability were observed in the experiments:temporal and spatial instability,mode transition and re-initiation.The interaction between RDW and supply plenum may be the main reason for the fluctuations of detonation wave velocity and pressure peaks with time.Moreover,the inconsistent mixing of fuel and oxidizer at different circumferential positions is related to RDW oscillate spatially.The phenomenon of single-double-single wave transition is analyzed.During the transition,the initial RDW weakens until disappears,and the compression wave strengthens until it becomes a new RDWand propagates steadily.The increased deflagration between the detonation products and the fresh gas layer caused by excessively high temperature is one of the reasons for the RDC quenching and re-initiation. 展开更多
关键词 rotating detonation wave Liquid kerosene Oxygen-enriched air Instability propagation characteristics Compression wave
在线阅读 下载PDF
Effects of total pressures and equivalence ratios on kerosene/air rotating detonation engines using a paralleling CE/SE method 被引量:10
7
作者 Fang Wang Chun-sheng Weng +3 位作者 Yu-wen Wu Qiao-dong Bai Quan Zheng Han Xu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第6期1805-1816,共12页
In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE inc... In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE including the initiation,instabilities,and propulsive performance.A hybrid MPI t OpenMP parallel computing model is applied and it is proved to be able to obtain a more effective parallel performance on high performance computing(HPC)systems.A series of cases with the total pressure of 1 MPa,1.5 MPa,2 MPa,and the equivalence ratio of 0.9,1,1.4 are simulated.On one hand,the total pressure shows a significant impact on the instabilities of rotating detonation waves.The instability phenomenon is observed in cases with low total pressure(1 MPa)and weakened with the increase of the total pressure.The total pressure has a small impact on the detonation wave velocity and the specific impulse.On the other hand,the equivalence ratio shows a negligible influence on the instabilities,while it affects the ignition process and accounts for the detonation velocity deficit.It is more difficult to initiate rotating detonation waves directly in the lean fuel operation condition.Little difference was observed in the thrust with different equivalence ratios of 0.9,1,and 1.4.The highest specific impulse was obtained in the lean fuel cases,which is around 2700 s.The findings could provide insights into the understanding of the operation characteristics of kerosene/air RDE. 展开更多
关键词 Kerosene/air rotating detonation waves Total pressure Equivalence ratio INSTABILITIES MPItOpenMP
在线阅读 下载PDF
Influence of propagation direction on operation performance of rotating detonation combustor with turbine guide vane 被引量:9
8
作者 Wan-li Wei Yu-wen Wu +1 位作者 Chun-sheng Weng Quan Zheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1617-1624,共8页
Due to the pressure gain combustion characteristics,the rotating detonation combustor(RDC)can enhance thermodynamic cycle efficiency.Therefore,the performance of gas-turbine engine can be further improved with this co... Due to the pressure gain combustion characteristics,the rotating detonation combustor(RDC)can enhance thermodynamic cycle efficiency.Therefore,the performance of gas-turbine engine can be further improved with this combustion technology.In the present study,the RDC operation performance with a turbine guide vane(TGV)is experimentally investigated.Hydrogen and air are used as propellants while hydrogen and air mass flow rate are about 16.1 g/s and 500 g/s and the equivalence ratio is about 1.0.A pre-detonator is used to ignite the mixture.High-frequency dynamic pressure transducers and silicon pressure sensors are employed to measure pressure oscillations and static pressure in the combustion chamber.The experimental results show that the steady propagation of rotating detonation wave(RDW)is observed in the combustion chamber and the mean propagation velocity is above 1650 m/s,reaching over 84%of theoretical Chapman-Jouguet detonation velocity.Clockwise and counterclockwise propagation directions of RDW are obtained.For clockwise propagation direction,the static pressure is about 15%higher in the combustor compared with counterclockwise propagation direction,but the RDW dominant frequency is lower.When the oblique shock wave propagates across the TGV,the pressure oscillations reduces significantly.In addition,as the detonation products flow through the TGV,the static pressure drops up to 32%and 43%for clockwise and counterclockwise propagation process respectively. 展开更多
关键词 rotating detonation combustor Propagation direction Turbine guide vane Operation performance
在线阅读 下载PDF
Experimental study on propagation characteristics of rotating detonation wave with kerosene fuel-rich gas 被引量:8
9
作者 Jia-xiang Han Qiao-dong Bai +2 位作者 Shi-jian Zhang Fang Wang Chun-sheng Weng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第8期1498-1512,共15页
In this study, kerosene fuel-rich gas produced by the combustion in the gas generator was used as the fuel and oxygen-rich air was used as the oxidant to investigate the propagation characteristics of the rotating det... In this study, kerosene fuel-rich gas produced by the combustion in the gas generator was used as the fuel and oxygen-rich air was used as the oxidant to investigate the propagation characteristics of the rotating detonation wave (RDW). The initiation of the kerosene fuel-rich gas and propagation process of the RDW were analyzed. The influences of the oxygen content in the oxidizer, kerosene mass flow rate of the gas generator, and temperature of the kerosene fuel-rich gas on the propagation process of the RDW were studied. The experimental results revealed that the propagation velocity of the RDW could be improved by increasing the three parameters mentioned above with the kerosene mass flow rate as the strongest factor. The minimum oxygen content that could successfully initiate and maintain the stable propagation of the RDW was 32%, achieving the RDW velocity of 1141.9 m/s. The RDW mainly propagated as two-counter rotating waves and a single wave when the equivalent ratios were 0.62–0.79 and 0.85–0.87, respectively. The highest RDW velocity of 1637.2 m/s was obtained when the kerosene mass flow rate, oxygen content, and equivalent ratio were 74.6 g/s, 44%, and 0.87, respectively. 展开更多
关键词 rotating detonation wave Kerosene fuel-rich gas Initiation process Propagation mode
在线阅读 下载PDF
The application on order analysis for the rotating machinery with LabVIEW 被引量:5
10
作者 Yu Zhouxiang Wang Shaohong +1 位作者 Xu Kang Liu Bin 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第S1期157-161,共5页
Order analysis is regarded as one of the most significant method for monitoring and analyzing rotational machinery for the phenomenon of " frequency smear".However,the order analysis based on resampling is a... Order analysis is regarded as one of the most significant method for monitoring and analyzing rotational machinery for the phenomenon of " frequency smear".However,the order analysis based on resampling is a signal processingwhich converts the constant time interval sampling into constant angle interval sampling,while with the variety of the rotational speed.The superiority of the order analysis is investigatedon implement of order analysis.Andthrough comparing the advantage and disadvantage between spectrum and order analysis,the paper will discuss the order analysis form a deep perspective. 展开更多
关键词 order analysis RESAMPLING rotating machinery LABVIEW
在线阅读 下载PDF
An improved computation scheme of strapdown inertial navigation system using rotation technique 被引量:8
11
作者 张伦东 练军想 +1 位作者 吴美平 胡小平 《Journal of Central South University》 SCIE EI CAS 2012年第5期1258-1266,共9页
To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,a... To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of SINS errors.However,the errors of rotation platform will be introduced into SINS and might affect the final navigation accuracy.Considering the disadvantages of the conventional navigation computation scheme,an improved computation scheme of the SINS using rotation technique is proposed which can reduce the effects of the rotation platform errors.And,the error characteristics of the SINS with this navigation computation scheme are analyzed.Theoretical analysis,simulations and real test results show that the proposed navigation computation scheme outperforms the conventional navigation computation scheme,meanwhile reduces the requirement to the measurement accuracy of rotation angles. 展开更多
关键词 strapdown inertial navigation system rotation technique navigation computation scheme error characteristic
在线阅读 下载PDF
Mechanism analysis and process optimization of sand and plug removal with rotating jet in horizontal well 被引量:3
12
作者 祝效华 李佳南 童华 《Journal of Central South University》 SCIE EI CAS 2013年第6期1631-1637,共7页
In the view of the problems existing in horizontal well,such as sand depositing and cleaning difficulty of borehole,a technology with rotating jet suitable to resolution of the problems was presented.Based on liquid s... In the view of the problems existing in horizontal well,such as sand depositing and cleaning difficulty of borehole,a technology with rotating jet suitable to resolution of the problems was presented.Based on liquid solid two-phase flow theory,the analyses on the sand movement law and the swirling field influential factors were conducted.Results show that:1) With the increasing of displacement in horizontal section annulus,swirling field strength increases,and when the displacement is constant,the closer from the nozzle,the stronger the swirling field strength is;2) Head rotating speed and liquid viscosity have little influence on the swirling field strength,but the sand-carrying rate of fluid can increase by increasing liquid viscosity in a certain range;3) Rotating the string and reducing its eccentricity in annulus are conducive for sand migration in the annulus;4) The sand can be suspended and accelerated again and the swirling field strength is enhanced by the helix agitator.Hence,the research results provide the theoretical basis for the design and application of rotating jet tool. 展开更多
关键词 horizontal well sand and plug removal rotating jets sand depositing influence factors
在线阅读 下载PDF
A phenomenological model for plastic flow behavior of rotating band material with a large temperature range 被引量:2
13
作者 Yi-cheng Zhu Jia-wei Fu +1 位作者 Lin-fang Qian Jing-hua Cao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期121-133,共13页
The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the an... The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the annealed one. The dynamically uniaxial compression behavior of the material is tested using the split Hopkinson pressure bar(SHPB) with temperature and strain rate ranging from 297 to 1073 K and500 to 3000 s^(-1), respectively, and a phenomenological plastic flow stress model is developed to describe the mechanical behavior of the material. The material is found to present noticeable temperature sensitivity and weak strain-rate sensitivity. The construction of the plastic flow stress model has two steps. Firstly, three univariate stress functions, taking plastic strain, plastic strain rate and temperature as independent variable, respectively, are proposed by fixing the other two variables. Then, as the three univariate functions describe the special cases of flow stress behavior under various conditions, the principle of stress compatibility is adopted to obtain the complete flow stress function. The numerical results show that the proposed plastic flow stress model is more suitable for the rotating band material than the existing well-known models. 展开更多
关键词 rotating band Plastic flow behavior Large temperature range Phenomenological model
在线阅读 下载PDF
Effect of moving baffle on average velocity and mixing of binary particles in rotating drums 被引量:2
14
作者 ZHANG Li-dong MA Jie +3 位作者 WANG Zhi-chao QIN Hong BAI Jing-ru WANG Qing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期478-489,共12页
Adding a moving baffle to the drum is a new way to enhance the motion and mixing of particles in rotating drums.To obtain its influence on binary particles,horizontal rotating drums provided with a moving baffle were ... Adding a moving baffle to the drum is a new way to enhance the motion and mixing of particles in rotating drums.To obtain its influence on binary particles,horizontal rotating drums provided with a moving baffle were investigated by discrete element method(DEM).AtΩ=15 r/min,increasing the length of moving baffle can increase the fluctuation amplitude of average particle velocity.AtΩ=60 r/min,the influence of the moving baffle on the average velocity fluctuation tends to be more random.At both rotational speeds,the moving baffle causes the average particle velocity to fluctuate more sharply.The moving baffle can enhance particle mixing.AtΩ=15 r/min,the moving baffle with length ofδ=1/3 can best enhance particle mixing.However,atΩ=60 r/min,only the moving baffle with a specific length(δ=1/4)can enhance mixing.This basic research has a positive reference value for the application of the moving baffle in industry. 展开更多
关键词 discrete element method(DEM) rotating drum moving baffle binary particles
在线阅读 下载PDF
Modified Omega-K algorithm for processing helicopter-borne frequency modulated continuous waveform rotating synthetic aperture radar data 被引量:2
15
作者 Dong Li Guisheng Liao +1 位作者 Yong Liao Lisheng Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期476-485,共10页
With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With ... With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With this capability, ROSAR has extensive potential applications, such as self-navigation and self-landing. Moreover, it has many advantages if combined with the frequency modulated continuous wave (FMCW) technology. A novel geometric configuration and an imaging algorithm for helicopter-borne FMCW-ROSAR are proposed. Firstly, by per- forming the equivalent phase center principle, the separated trans- mitting and receiving antenna system is equalized to the case of system configuration with antenna for both transmitting and receiving signals. Based on this, the accurate two-dimensional spectrum is obtained and the Doppler frequency shift effect in- duced by the continuous motion of the platform during the long pulse duration is compensated. Next, the impacts of the velocity approximation error on the imaging algorithm are analyzed in de- tail, and the system parameters selection and resolution analysis are presented. The well-focused SAR image is then obtained by using the improved Omega-K algorithm incorporating the accurate compensation method for the velocity approximation error. FJnally, correctness of the analysis and effectiveness of the proposed al- gorithm are demonstrated through simulation results. 展开更多
关键词 helicopter-borne rotating synthetic aperture radar(ROSAR) frequency modulated continuous wave (FMCW) improved Omega-K algorithm two-dimensional spectrum.
在线阅读 下载PDF
Suppression of the G-sensitive drift of laser gyro in dual-axis rotational inertial navigation system 被引量:3
16
作者 YU Xudong WANG Zichao +2 位作者 FAN Huiying WEI Guo WANG Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期822-830,共9页
The dual-axis rotational inertial navigation system(INS)with dithered ring laser gyro(DRLG)is widely used in high precision navigation.The major inertial sensor errors such as drift errors of gyro and accelerometer ca... The dual-axis rotational inertial navigation system(INS)with dithered ring laser gyro(DRLG)is widely used in high precision navigation.The major inertial sensor errors such as drift errors of gyro and accelerometer can be averaged out,but the G-sensitive drifts of laser gyro cannot be averaged out by indexing.A 16-position rotational simulation experiment proves the G-sensitive drift will affect the long-term navigation error for the rotational INS quantitatively.The vibration coupling and asymmetric structure of the DRLG are the main errors.A new dithered mechanism and optimized DRLG is designed.The validity and efficiency of the optimized design are conformed by 1 g sinusoidal vibration experiments.An optimized inertial measurement unit(IMU)is formulated and measured experimentally.Laboratory and vehicle experimental results show that the divergence speed of longitude errors can be effectively slowed down in the optimized IMU.In long term independent navigation,the position accuracy of dual-axis rotational INS is improved close to 50%,and the G-sensitive drifts of laser gyro in the optimized IMU are less than 0.0002°/h.These results have important theoretical significance and practical value for improving the structural dynamic characteristics of DRLG INS,especially the highprecision inertial system. 展开更多
关键词 inertial navigation rotational inertial navigation system(INS) laser gyro G-sensitive drift
在线阅读 下载PDF
Aliasing-free high resolution imaging of fast rotating targets with narrowband radar 被引量:1
17
作者 游鹏 刘振 +2 位作者 魏玺章 王宏强 黎湘 《Journal of Central South University》 SCIE EI CAS 2014年第5期1842-1851,共10页
Narrowband radar has been successfully used for high resolution imaging of fast rotating targets by exploiting their micro-motion features.In some practical situations,however,the target image may suffer from aliasing... Narrowband radar has been successfully used for high resolution imaging of fast rotating targets by exploiting their micro-motion features.In some practical situations,however,the target image may suffer from aliasing due to the fixed pulse repetition interval(PRI)of traditional radar scheme.In this work,the random PRI signal associated with compressed sensing(CS)theory was introduced for aliasing reduction to obtain high resolution images of fast rotating targets.To circumvent the large-scale dictionary and high computational complexity problem arising from direct application of CS theory,the low resolution image was firstly generated by applying a modified generalized Radon transform on the time-frequency domain,and then the dictionary was scaled down by random undersampling as well as the atoms extraction according to those strong scattering areas of the low resolution image.The scale-down-dictionary CS(SDD-CS)processing scheme was detailed and simulation results show that the SDD-CS scheme for narrowband radar can achieve preferable images with no aliasing as well as acceptable computational cost. 展开更多
关键词 narrowband radar imaging fast rotating compressed sensing random pulse repetitive interval aliasing reduction
在线阅读 下载PDF
Recovery of Hg(Ⅱ)from aqueous solution by complexation-ultrafiltration using rotating disk membrane and shear stability of PMA-Hg complex 被引量:1
18
作者 ZHOU Han QIU Yun-ren CHEN Yu-xin 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2507-2514,共8页
Copolymer of acrylic acid and maleic acid(PMA)was used to remove Hg^2+from aqueous solution by complexation-ultrafiltration(C-UF)through rotating disk membrane(RDM).The effects of P/M(mass ratio of PMA to metal ions),... Copolymer of acrylic acid and maleic acid(PMA)was used to remove Hg^2+from aqueous solution by complexation-ultrafiltration(C-UF)through rotating disk membrane(RDM).The effects of P/M(mass ratio of PMA to metal ions),pH and rotation speed(N)on the interception of Hg^2+were investigated.The interception could reach 99.7%at pH 7.0,P/M 6 and N less than 1890 r/min.The shear stability of PMA-Hg complex was studied by RDM.The critical rotation speed,at which the interception starts to decrease,was 1890 r/min,and the critical shear rate,the smallest shear rate at which PMA-Hg complex begins to dissociate,was 2.50×10^5s^-1 at pH 7.0.Furthermore,the critical radii were obtained at different rotation speeds and pHs.The results showed that the critical radius decreased with the rotation speed and increased with pH.Shear induced dissociation coupling with ultra?ltration(SID-UF)was efficiently used to recover Hg^2+and PMA. 展开更多
关键词 complexation-ultrafiltration shear induced dissociation rotating disk membrane shear stability wastewater treatment
在线阅读 下载PDF
Reducing residual distortion of thin-plate weldments by rotating extrusion 被引量:1
19
作者 李军 杨建国 +1 位作者 方洪渊 张文锋 《Journal of Central South University》 SCIE EI CAS 2013年第4期859-865,共7页
A new method named rotating extrusion was developed to mitigate residual distortion of thin-plate weldments. The basic principle and characteristic of rotating extrusion as well as an efficient rotating extrusion devi... A new method named rotating extrusion was developed to mitigate residual distortion of thin-plate weldments. The basic principle and characteristic of rotating extrusion as well as an efficient rotating extrusion device were introduced. Systematic trials were conducted to investigate the influence of several technological parameters including the distance between the extrusion tool and welding torch, the pressure acting on weldment, the dimension of the extrusion tool and its rotational speed on distortion control effect. Experimental results show that, as for 2A12T4 aluminum alloy weldment with 2 mm in thickness, 150 mm in width and 350 mm in length, when appropriate technological parameters are adopted, rotating extrusion can reduce its buckling deflection to below 3% of the original value. Implementing rotating extrusion during welding with an extrusion tool more than 100 mm away from the welding torch may achieve better distortion mitigation effect. 展开更多
关键词 welding distortion thin plate aluminum alloy rotating extrusion
在线阅读 下载PDF
Effects of symmetrically alternative rotating flow on flocculation 被引量:1
20
作者 徐继润 张育新 +4 位作者 邢军 孙永正 徐海燕 刘正宁 康勇 《Journal of Central South University of Technology》 2003年第4期338-341,共4页
A symmetrically alternative rotating flow pattern was designed for flocculation process in order to produce large and dense flocs. The special effects of a symmetrically alternative rotating flow on the diameter and d... A symmetrically alternative rotating flow pattern was designed for flocculation process in order to produce large and dense flocs. The special effects of a symmetrically alternative rotating flow on the diameter and density of flocs were investigated. The results show that under the new fluid conditions, the primary particles on the outer part of the formed flocs may be cut down and the flocs contract at the end of the original rotating direction; then fluid changes its rotating direction, an opposite shearing is imposed to the flocs and makes some primary particles slide along the floc surface, leading to a denser floc; meanwhile, the broken and unflocculated particles on the trajectory may have opportunities to penetrate into or cohere to the flocs. Compared with the conventional rotating flow, the new-designed flow pattern can not only keep the floc size (even enlarge the floc diameter if a suitable flow is chosen) but also increase the floc density effectively. 展开更多
关键词 FLOCCULATION SHEARING RATE SYMMETRIC and ALTERNATIVE rotating flow
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部