In order to numerically simulate the failure process of rock and concrete under uniaxial tension,an improved method of selecting the mechanical properties of materials was presented for the random mechanic parameter m...In order to numerically simulate the failure process of rock and concrete under uniaxial tension,an improved method of selecting the mechanical properties of materials was presented for the random mechanic parameter model based on the mesoscopic damage mechanics.The product of strength and elastic modulus of mesoscale representative volume element was considered to be one of the mechanical property parameters of materials and assumed to conform to specified probability distributions to reflect the heterogeneity of mechanical property in materials.With the improved property parameter selection method,a numerical program was developed and the simulation of the failure process of the rock and concrete specimens under static tensile loading condition was carried out.The failure process and complete stress-strain curves of a class of rock and concrete in stable fracture propagation manner under uniaxial tension were obtained.The simulated macroscopic mechanical behavior was compared with the available laboratory experimental observation,and a reasonable agreement was obtained.Verification shows that the improved parameter selection method is suitable for mesoscopic numerical simulation in the failure process of rock and concrete.展开更多
In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and a...In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances.展开更多
The understanding of the rock deformation and failure process and the development of appropriate constitutive models are the basis for solving problems in rock engineering. In order to investigate progressive failure ...The understanding of the rock deformation and failure process and the development of appropriate constitutive models are the basis for solving problems in rock engineering. In order to investigate progressive failure behavior in brittle rocks, a modified constitutive model was developed which follows the principles of the continuum damage mechanics method. It incorporates non-linear Hoek-Brown failure criterion, confining pressure-dependent strength degradation and volume dilation laws, and is able to represent the nonlinear degradation and dilation behaviors of brittle rocks in the post-failure region. A series of triaxial compression tests were carried out on Eibenstock(Germany) granite samples. Based on a lab data fitting procedure, a consistent parameter set for the modified constitutive model was deduced and implemented into the numerical code FLAC3 D. The good agreement between numerical and laboratory results indicates that the modified constitutive law is well suited to represent the nonlinear mechanical behavior of brittle rock especially in the post-failure region.展开更多
基金Project(50679006) supported by the National Natural Science Foundation of ChinaProject(NCET-06-0270) supported by the Program for New Century Excellent Talents in University
文摘In order to numerically simulate the failure process of rock and concrete under uniaxial tension,an improved method of selecting the mechanical properties of materials was presented for the random mechanic parameter model based on the mesoscopic damage mechanics.The product of strength and elastic modulus of mesoscale representative volume element was considered to be one of the mechanical property parameters of materials and assumed to conform to specified probability distributions to reflect the heterogeneity of mechanical property in materials.With the improved property parameter selection method,a numerical program was developed and the simulation of the failure process of the rock and concrete specimens under static tensile loading condition was carried out.The failure process and complete stress-strain curves of a class of rock and concrete in stable fracture propagation manner under uniaxial tension were obtained.The simulated macroscopic mechanical behavior was compared with the available laboratory experimental observation,and a reasonable agreement was obtained.Verification shows that the improved parameter selection method is suitable for mesoscopic numerical simulation in the failure process of rock and concrete.
基金Projects(52074166,51774195,51704185)supported by the National Natural Science Foundation of ChinaProject(2019M652436)supported by the China Postdoctoral Science Foundation。
文摘In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances.
基金Project(2015M570678)supported by China Postdoctoral Science Foundation funded project
文摘The understanding of the rock deformation and failure process and the development of appropriate constitutive models are the basis for solving problems in rock engineering. In order to investigate progressive failure behavior in brittle rocks, a modified constitutive model was developed which follows the principles of the continuum damage mechanics method. It incorporates non-linear Hoek-Brown failure criterion, confining pressure-dependent strength degradation and volume dilation laws, and is able to represent the nonlinear degradation and dilation behaviors of brittle rocks in the post-failure region. A series of triaxial compression tests were carried out on Eibenstock(Germany) granite samples. Based on a lab data fitting procedure, a consistent parameter set for the modified constitutive model was deduced and implemented into the numerical code FLAC3 D. The good agreement between numerical and laboratory results indicates that the modified constitutive law is well suited to represent the nonlinear mechanical behavior of brittle rock especially in the post-failure region.