Geometric design of forest roads and design of their landscapes can reduce noise pollution and its harmful effects on human health. We investigated the effects of technical and biological parameters such as geometric ...Geometric design of forest roads and design of their landscapes can reduce noise pollution and its harmful effects on human health. We investigated the effects of technical and biological parameters such as geometric road design and various roadside tree stands on reducing noise pollution according to the tree density and distance from roadway in Darabkola Forests, Sari, Iran. We recorded the noise generated by a car (Land Rover) relative to changes in longitudinal slope, horizontal curve radius and type of road pavement. We also measured noise levels according to roadside tree density and stand type (coniferous and hardwood) in 40 rectangular plots of three widths (25, 100 and 300 m) and 50 m length that were randomly demar- cated along forest roads. The changes in noise level were recorded using a decibel meter with an accuracy of q-1.5 dB and resolution of 0.1 dB. Noise levels were higher alongside unpaved roads than alongside paved roads. There was an inverse relationship between the measured noise level and horizontal curve radius. The rate of noise level on horizontal curve with a radius less than 30, 30-45 m and more than 45 m were 64.8, 70.8 and 75.9 dB, respectively. The noise level increased with the increasing longitudinal slope of the road. There was a significant difference between the noise level on slopes less than 3 % (67 dB) and 3-8 % (71.2 dB) in comparison with slopes greater than 8 % (77.8 dB), (p 〈 0.05). Pinus brutia L. reduced the noise level more (about 6 dB) in stands of 1/3 density of mixed hardwoods within 25 m from middle of the road. Careful design of geometric properties of forest roads as well as planting coniferous trees with hardwoods is a suitable solution for reducing noise pollution.展开更多
The analysis of the fluid characteristics downstream of a fire source in transportation tunnels is one the most important factor in the emergency response, evacuation, and the rescue service studies. Some crucial para...The analysis of the fluid characteristics downstream of a fire source in transportation tunnels is one the most important factor in the emergency response, evacuation, and the rescue service studies. Some crucial parameters can affect the fluid characteristics downstream of the fire. This research develops a statistical analysis on the computational fluid dynamics(CFD) data of the road tunnel fire simulations in order to quantify the significance of tunnel dimensions, inlet air velocity, heat release rate, and the physical fire size(fire perimeter) on the fluid characteristics downstream of the fire source. The selected characteristics of the fluid(response variables) were the average temperature, the average density, the average viscosity, and the average velocity. The prediction of the designed statistical models was assessed; then the significant parameters' effects and the parameters interactive effects on different response variables were determined individually. Next, the effect of computational domain length on the selection of the significant parameters downstream of the fire source was analyzed. In this statistical analysis, the linear models were found to provide the statistically good prediction. The effect of the fire perimeter and the parameters interactive effects on the selected response variables downstream of the fire, were found to be insignificant.展开更多
文摘Geometric design of forest roads and design of their landscapes can reduce noise pollution and its harmful effects on human health. We investigated the effects of technical and biological parameters such as geometric road design and various roadside tree stands on reducing noise pollution according to the tree density and distance from roadway in Darabkola Forests, Sari, Iran. We recorded the noise generated by a car (Land Rover) relative to changes in longitudinal slope, horizontal curve radius and type of road pavement. We also measured noise levels according to roadside tree density and stand type (coniferous and hardwood) in 40 rectangular plots of three widths (25, 100 and 300 m) and 50 m length that were randomly demar- cated along forest roads. The changes in noise level were recorded using a decibel meter with an accuracy of q-1.5 dB and resolution of 0.1 dB. Noise levels were higher alongside unpaved roads than alongside paved roads. There was an inverse relationship between the measured noise level and horizontal curve radius. The rate of noise level on horizontal curve with a radius less than 30, 30-45 m and more than 45 m were 64.8, 70.8 and 75.9 dB, respectively. The noise level increased with the increasing longitudinal slope of the road. There was a significant difference between the noise level on slopes less than 3 % (67 dB) and 3-8 % (71.2 dB) in comparison with slopes greater than 8 % (77.8 dB), (p 〈 0.05). Pinus brutia L. reduced the noise level more (about 6 dB) in stands of 1/3 density of mixed hardwoods within 25 m from middle of the road. Careful design of geometric properties of forest roads as well as planting coniferous trees with hardwoods is a suitable solution for reducing noise pollution.
文摘The analysis of the fluid characteristics downstream of a fire source in transportation tunnels is one the most important factor in the emergency response, evacuation, and the rescue service studies. Some crucial parameters can affect the fluid characteristics downstream of the fire. This research develops a statistical analysis on the computational fluid dynamics(CFD) data of the road tunnel fire simulations in order to quantify the significance of tunnel dimensions, inlet air velocity, heat release rate, and the physical fire size(fire perimeter) on the fluid characteristics downstream of the fire source. The selected characteristics of the fluid(response variables) were the average temperature, the average density, the average viscosity, and the average velocity. The prediction of the designed statistical models was assessed; then the significant parameters' effects and the parameters interactive effects on different response variables were determined individually. Next, the effect of computational domain length on the selection of the significant parameters downstream of the fire source was analyzed. In this statistical analysis, the linear models were found to provide the statistically good prediction. The effect of the fire perimeter and the parameters interactive effects on the selected response variables downstream of the fire, were found to be insignificant.