期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于RoBERTa和集中注意力机制的营商政策多标签分类
1
作者 陈昊飏 《计算机应用》 CSCD 北大核心 2024年第S01期44-48,共5页
为了满足营商政策多标签分类的社会需求,解决使用擅长文本分类、但输入受限的大语言预训练模型进行长文本分类的难题,提出一种基于RoBERTa模型和集中注意力机制的方法,更好地提取语义集中区域的信息表征,对营商政策文本进行有效的多标... 为了满足营商政策多标签分类的社会需求,解决使用擅长文本分类、但输入受限的大语言预训练模型进行长文本分类的难题,提出一种基于RoBERTa模型和集中注意力机制的方法,更好地提取语义集中区域的信息表征,对营商政策文本进行有效的多标签分类。首先,对数据清洗和分析后,得到一定的先验知识:营商政策文本的语义表征集中在文本标题与开篇部分。其次,在文本输入层和向量表示层中,构建集中注意力机制对文本和向量进行处理,增强模型在训练中对语义集中区域的注意力,提高模型信息表征提取能力,优化长文本分类的效果。实验中爬取政府公开的营商政策文本作为数据集,实验结果表明,营商政策长文本分类的准确率可达0.95,Micro-F1值可达0.91,同时对比实验结果显示,融合RoBERTa和集中注意力机制进行营商政策长文本多标签分类比其他模型效果更好。 展开更多
关键词 多标签分类 长文本 营商政策 roberta 预训练模型 注意力机制
在线阅读 下载PDF
基于预训练模型与标签融合的文本分类 被引量:3
2
作者 余杭 周艳玲 +1 位作者 翟梦鑫 刘涵 《计算机应用》 CSCD 北大核心 2024年第3期709-714,共6页
对海量的用户文本评论数据进行准确分类具有重要的经济效益和社会效益。目前大部分文本分类方法是将文本编码直接使用于各式的分类器之前,而忽略了标签文本中蕴含的提示信息。针对以上问题,提出一种基于RoBERTa(Robustly optimized BERT... 对海量的用户文本评论数据进行准确分类具有重要的经济效益和社会效益。目前大部分文本分类方法是将文本编码直接使用于各式的分类器之前,而忽略了标签文本中蕴含的提示信息。针对以上问题,提出一种基于RoBERTa(Robustly optimized BERT pretraining approach)的文本和标签信息融合分类模型(TLIFC-RoBERTa)。首先,利用RoBERTa预训练模型获得词向量;然后,利用孪生网络结构分别训练文本和标签向量,通过交互注意力将标签信息映射到文本上,达到将标签信息融入模型的效果;最后,设置自适应融合层将文本表示与标签表示紧密融合进行分类。在今日头条和THUCNews数据集上的实验结果表明,相较于将Labelatt(Label-based attention improved model)中使用的静态词向量改为RoBERTa-wwm训练后的词向量算法(RA-Labelatt)、RoBERTa结合基于标签嵌入的多尺度卷积初始化文本分类算法(LEMC-RoBERTa)等主流深度学习模型,TLIFC-RoBERTa的精度最高,对于用户评论数据集有最优的分类效果。 展开更多
关键词 文本分类 预训练模型 交互注意力 标签嵌入 roberta
在线阅读 下载PDF
基于预训练语言模型和TRIZ发明原理的专利分类方法 被引量:1
3
作者 贾丽臻 白晓磊 《科学技术与工程》 北大核心 2024年第30期13055-13063,共9页
为充分挖掘专利文本中已有的解决方案和技术知识,依据发明问题解决理论(theory of inventive problem solving,TRIZ),提出了一种基于预训练语言模型的方法,将其用于面向TRIZ发明原理的中文专利分类研究中。基于整词掩码技术,使用不同数... 为充分挖掘专利文本中已有的解决方案和技术知识,依据发明问题解决理论(theory of inventive problem solving,TRIZ),提出了一种基于预训练语言模型的方法,将其用于面向TRIZ发明原理的中文专利分类研究中。基于整词掩码技术,使用不同数量的专利数据集(标题和摘要)对中文RoBERTa模型进一步预训练,生成特定于专利领域的RoBERTa_patent1.0和RoBERTa_patent2.0两个模型,并在此基础上添加全连接层,构建了基于RoBERTa、RoBERTa_patent1.0和RoBERTa_patent2.0的三个专利分类模型。然后使用构建的基于TRIZ发明原理的专利数据集对以上三个分类模型进行训练和测试。实验结果表明,RoBERTa_patent2.0_IP具有更高的准确率、宏查准率、宏查全率和宏F 1值,分别达到96%、95.69%、94%和94.84%,实现了基于TRIZ发明原理的中文专利文本自动分类,可以帮助设计者理解与应用TRIZ发明原理,实现产品的创新设计。 展开更多
关键词 预训练语言模型 roberta 发明原理 整词掩码技术 文本分类
在线阅读 下载PDF
基于句级别GAN的跨语言零资源命名实体识别模型 被引量:2
4
作者 张小艳 段正宇 《计算机应用》 CSCD 北大核心 2023年第8期2406-2411,共6页
针对低资源语言缺少标签数据,而无法使用现有成熟的深度学习方法进行命名实体识别(NER)的问题,提出基于句级别对抗生成网络(GAN)的跨语言NER模型——SLGAN-XLM-R(Sentence Level GAN Based on XLM-R)。首先,使用源语言的标签数据在预训... 针对低资源语言缺少标签数据,而无法使用现有成熟的深度学习方法进行命名实体识别(NER)的问题,提出基于句级别对抗生成网络(GAN)的跨语言NER模型——SLGAN-XLM-R(Sentence Level GAN Based on XLM-R)。首先,使用源语言的标签数据在预训练模型XLM-R (XLM-Robustly optimized BERT pretraining approach)的基础上训练NER模型;同时,结合目标语言的无标签数据对XLM-R模型的嵌入层进行语言对抗训练;然后,使用NER模型来预测目标语言无标签数据的软标签;最后,混合源语言与目标语言的标签数据,以对模型进行二次微调来得到最终的NER模型。在CoNLL2002和CoNLL2003两个数据集的英语、德语、西班牙语、荷兰语四种语言上的实验结果表明,以英语作为源语言时,SLGAN-XLM-R模型在德语、西班牙语、荷兰语测试集上的F1值分别为72.70%、79.42%、80.03%,相较于直接在XLM-R模型上进行微调分别提升了5.38、5.38、3.05个百分点。 展开更多
关键词 跨语言 命名实体识别 XLM-R 语言对抗训练 预训练模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部