传统的多类型反向最近邻(multiple type reverse nearest neighbor,MTRNN)查询算法没有过滤搜索空间中的数据,因此效率低下。为有效提高MTRNN查询的效率,在概述MTRNN基础上采用几何方法开发了基于R-tree的闭区域和开区域修剪方法并进一...传统的多类型反向最近邻(multiple type reverse nearest neighbor,MTRNN)查询算法没有过滤搜索空间中的数据,因此效率低下。为有效提高MTRNN查询的效率,在概述MTRNN基础上采用几何方法开发了基于R-tree的闭区域和开区域修剪方法并进一步提出了高效的过滤算法。过滤算法通过构造闭修剪区域和开修剪区域来修剪查询空间,对大数据下的MTRNN查询过滤效果十分显著。最后通过实验验证了算法的有效性。展开更多
提出了一种快速的稀有类检测算法——CATION(rare category detection algorithm based on weightedboundary degree).通过使用加权边界度(weighted boundary degree,简称WBD)这一新的稀有类检测标准,该算法可利用反向k近邻的特性来寻...提出了一种快速的稀有类检测算法——CATION(rare category detection algorithm based on weightedboundary degree).通过使用加权边界度(weighted boundary degree,简称WBD)这一新的稀有类检测标准,该算法可利用反向k近邻的特性来寻找稀有类的边界点,并选取加权边界度最高的边界点询问其类别标签.实验结果表明,与现有方法相比,该算法避免了现有方法的局限性,大幅度地提高了发现数据集中各个类的效率,并有效地缩短了算法运行所需要的运行时间.展开更多
为了改进现有的组反k最近邻查询算法的查询速度与准确度,提出了一种基于Voronoi图的组反k最近邻查询方法(group reverse k nearest neighbor guery method based on Voronoi diagram,V_GRk NN)。该方法获得的结果集是将这组查询点中任...为了改进现有的组反k最近邻查询算法的查询速度与准确度,提出了一种基于Voronoi图的组反k最近邻查询方法(group reverse k nearest neighbor guery method based on Voronoi diagram,V_GRk NN)。该方法获得的结果集是将这组查询点中任意一点作为kN N的数据点集合,在实际应用中可以用来评估一组查询对象的影响力。该方法的特点是首先对查询点集Q进行优化处理,降低查询点数量对查询效率的负面影响;接着对数据点集P进行约减,缩小查询搜索范围;然后根据基于Voronoi图的剪枝策略对候选集进行过滤;最后经过精炼获得GRk NN查询的结果集。该方法在数据集处理阶段很大程度上提高了查询速度,在过滤、精炼阶段利用Voronoi图的特性提高了查询的准确性。理论研究和实验表明,所提方法的效率明显优于可选的已有方法。展开更多
文摘传统的多类型反向最近邻(multiple type reverse nearest neighbor,MTRNN)查询算法没有过滤搜索空间中的数据,因此效率低下。为有效提高MTRNN查询的效率,在概述MTRNN基础上采用几何方法开发了基于R-tree的闭区域和开区域修剪方法并进一步提出了高效的过滤算法。过滤算法通过构造闭修剪区域和开修剪区域来修剪查询空间,对大数据下的MTRNN查询过滤效果十分显著。最后通过实验验证了算法的有效性。
文摘提出了一种快速的稀有类检测算法——CATION(rare category detection algorithm based on weightedboundary degree).通过使用加权边界度(weighted boundary degree,简称WBD)这一新的稀有类检测标准,该算法可利用反向k近邻的特性来寻找稀有类的边界点,并选取加权边界度最高的边界点询问其类别标签.实验结果表明,与现有方法相比,该算法避免了现有方法的局限性,大幅度地提高了发现数据集中各个类的效率,并有效地缩短了算法运行所需要的运行时间.
文摘为了改进现有的组反k最近邻查询算法的查询速度与准确度,提出了一种基于Voronoi图的组反k最近邻查询方法(group reverse k nearest neighbor guery method based on Voronoi diagram,V_GRk NN)。该方法获得的结果集是将这组查询点中任意一点作为kN N的数据点集合,在实际应用中可以用来评估一组查询对象的影响力。该方法的特点是首先对查询点集Q进行优化处理,降低查询点数量对查询效率的负面影响;接着对数据点集P进行约减,缩小查询搜索范围;然后根据基于Voronoi图的剪枝策略对候选集进行过滤;最后经过精炼获得GRk NN查询的结果集。该方法在数据集处理阶段很大程度上提高了查询速度,在过滤、精炼阶段利用Voronoi图的特性提高了查询的准确性。理论研究和实验表明,所提方法的效率明显优于可选的已有方法。