Low-light image enhancement is one of the most active research areas in the field of computer vision in recent years.In the low-light image enhancement process,loss of image details and increase in noise occur inevita...Low-light image enhancement is one of the most active research areas in the field of computer vision in recent years.In the low-light image enhancement process,loss of image details and increase in noise occur inevitably,influencing the quality of enhanced images.To alleviate this problem,a low-light image enhancement model called RetinexNet model based on Retinex theory was proposed in this study.The model was composed of an image decomposition module and a brightness enhancement module.In the decomposition module,a convolutional block attention module(CBAM)was incorporated to enhance feature representation capacity of the network,focusing on crucial features and suppressing irrelevant ones.A multifeature fusion denoising module was designed within the brightness enhancement module,circumventing the issue of feature loss during downsampling.The proposed model outperforms the existing algorithms in terms of PSNR and SSIM metrics on the publicly available datasets LOL and MIT-Adobe FiveK,as well as gives superior results in terms of NIQE metrics on the publicly available dataset LIME.展开更多
针对Retinex理论的低照度图像增强算法中光照图像估计问题,提出一种基于YCbCr颜色空间的低照度图像增强方法.该方法将原始低照度图像从RGB(Red Green Blue)颜色空间转换到YCbCr颜色空间,提取该空间中Y分量构建为原始光照图像分量L1(x,y)...针对Retinex理论的低照度图像增强算法中光照图像估计问题,提出一种基于YCbCr颜色空间的低照度图像增强方法.该方法将原始低照度图像从RGB(Red Green Blue)颜色空间转换到YCbCr颜色空间,提取该空间中Y分量构建为原始光照图像分量L1(x,y),并对L1(x,y)进行Gamma校正得到增强的光照图像分量L2(x,y),经Retinex模型得到增强图像R(x,y),采用多尺度细节增强方法对图像R(x,y)进行细节增强,得到最终增强图像Re(x,y).实验结果表明,所提方法不仅能有效提升亮度,避免亮度和色彩失真,增强了图像的细节信息并获得了更好的视觉效果,而且运行速度快.展开更多
文摘Low-light image enhancement is one of the most active research areas in the field of computer vision in recent years.In the low-light image enhancement process,loss of image details and increase in noise occur inevitably,influencing the quality of enhanced images.To alleviate this problem,a low-light image enhancement model called RetinexNet model based on Retinex theory was proposed in this study.The model was composed of an image decomposition module and a brightness enhancement module.In the decomposition module,a convolutional block attention module(CBAM)was incorporated to enhance feature representation capacity of the network,focusing on crucial features and suppressing irrelevant ones.A multifeature fusion denoising module was designed within the brightness enhancement module,circumventing the issue of feature loss during downsampling.The proposed model outperforms the existing algorithms in terms of PSNR and SSIM metrics on the publicly available datasets LOL and MIT-Adobe FiveK,as well as gives superior results in terms of NIQE metrics on the publicly available dataset LIME.
文摘针对Retinex理论的低照度图像增强算法中光照图像估计问题,提出一种基于YCbCr颜色空间的低照度图像增强方法.该方法将原始低照度图像从RGB(Red Green Blue)颜色空间转换到YCbCr颜色空间,提取该空间中Y分量构建为原始光照图像分量L1(x,y),并对L1(x,y)进行Gamma校正得到增强的光照图像分量L2(x,y),经Retinex模型得到增强图像R(x,y),采用多尺度细节增强方法对图像R(x,y)进行细节增强,得到最终增强图像Re(x,y).实验结果表明,所提方法不仅能有效提升亮度,避免亮度和色彩失真,增强了图像的细节信息并获得了更好的视觉效果,而且运行速度快.