Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems...Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems are susceptible to malicious eavesdropping attacks during the information transmission,and this issue has not been adequately addressed.In this paper,we propose a physical-layer secure fog computing IoT system model,which is able to improve the physical layer security of fog computing IoT networks against the malicious eavesdropping of multiple eavesdroppers.The secrecy rate of the proposed model is analyzed,and the quantum galaxy–based search algorithm(QGSA)is proposed to solve the hybrid task scheduling and resource management problem of the network.The computational complexity and convergence of the proposed algorithm are analyzed.Simulation results validate the efficiency of the proposed model and reveal the influence of various environmental parameters on fog computing IoT networks.Moreover,the simulation results demonstrate that the proposed hybrid task scheduling and resource management scheme can effectively enhance secrecy performance across different communication scenarios.展开更多
Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom deg...Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom degree in radar resource management. In order to implement the effective resource management for the co-located MIMO radar in multi-target tracking,this paper proposes a resource management optimization model,where the system resource consumption and the tracking accuracy requirements are considered comprehensively. An adaptive resource management algorithm for the co-located MIMO radar is obtained based on the proposed model, where the sub-array number, sampling period, transmitting energy, beam direction and working mode are adaptively controlled to realize the time-space resource joint allocation. Simulation results demonstrate the superiority of the proposed algorithm. Furthermore, the co-located MIMO radar using the proposed algorithm can satisfy the predetermined tracking accuracy requirements with less comprehensive cost compared with the phased array radar.展开更多
This paper presents a co-time co-frequency fullduplex(CCFD)massive multiple-input multiple-output(MIMO)system to meet high spectrum efficiency requirements for beyond the fifth-generation(5G)and the forthcoming the si...This paper presents a co-time co-frequency fullduplex(CCFD)massive multiple-input multiple-output(MIMO)system to meet high spectrum efficiency requirements for beyond the fifth-generation(5G)and the forthcoming the sixth-generation(6G)networks.To achieve equilibrium of energy consumption,system resource utilization,and overall transmission capacity,an energy-efficient resource management strategy concerning power allocation and antenna selection is designed.A continuous quantum-inspired termite colony optimization(CQTCO)algorithm is proposed as a solution to the resource management considering the communication reliability while promoting energy conservation for the CCFD massive MIMO system.The effectiveness of CQTCO compared with other algorithms is evaluated through simulations.The results reveal that the proposed resource management scheme under CQTCO can obtain a superior performance in different communication scenarios,which can be considered as an eco-friendly solution for promoting reliable and efficient communication in future wireless networks.展开更多
The crowdsourcing, as a service pattern in cloud environment, usually aims at the cross-disciplinary cooperation and creating value together with customers and becomes increasingly prevalent. Software process, as a ki...The crowdsourcing, as a service pattern in cloud environment, usually aims at the cross-disciplinary cooperation and creating value together with customers and becomes increasingly prevalent. Software process, as a kind of software development and management strategy, is defined as a series of activities implemented by software life cycle and provides a set of rules for various phases of the software engineering to achieve the desired objectives. With the current software development cycle getting shorter, facing more frequent needs change and fierce competition, a new resource management pattern is proposed to respond to these issues agilely by introducing the crowdsourcing service to agile software development for pushing the agility of software process. Then, a user-oriented resource scheduling method is proposed for rational use of various resources in the process and maximizing the benefits of all parties. From the experimental results, the proposed pattern and resources scheduling method reduces greatly the resource of project resource manager and increases the team resource utilization rate, which greatly improves the agility of software process and delivers software products quickly in crowdsourcing pattern.展开更多
A power allocation scheme for multi-user multiple-input multiple-output orthogonal frequency division multiplexing (MI- MO-OFDM) systems with channel state information (CSI) on transmitter and receiver is pressed....A power allocation scheme for multi-user multiple-input multiple-output orthogonal frequency division multiplexing (MI- MO-OFDM) systems with channel state information (CSI) on transmitter and receiver is pressed. Multi-user lower allocation can be decoupled into single user lower allocation throughout null space mapping of multi-user channel and lower allocation can be performed throughout spatial-spectral water-filling for per user.To deal with more users in system and fading correlation,scheduling is oerformed to maintain the gain of power allocation.The proposed scheme can substantially improve system's spectral efficiency with low complexity.Simulation results validate the accuracy of theoretic analyses.展开更多
基金supported by the National Natural Science Foundation of China(61571149,62001139)the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098)the Natural Science Foundation of Heilongjiang Province(LH2020F0178).
文摘Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems are susceptible to malicious eavesdropping attacks during the information transmission,and this issue has not been adequately addressed.In this paper,we propose a physical-layer secure fog computing IoT system model,which is able to improve the physical layer security of fog computing IoT networks against the malicious eavesdropping of multiple eavesdroppers.The secrecy rate of the proposed model is analyzed,and the quantum galaxy–based search algorithm(QGSA)is proposed to solve the hybrid task scheduling and resource management problem of the network.The computational complexity and convergence of the proposed algorithm are analyzed.Simulation results validate the efficiency of the proposed model and reveal the influence of various environmental parameters on fog computing IoT networks.Moreover,the simulation results demonstrate that the proposed hybrid task scheduling and resource management scheme can effectively enhance secrecy performance across different communication scenarios.
基金supported by the National Natural Science Fundation of China (61671137)。
文摘Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom degree in radar resource management. In order to implement the effective resource management for the co-located MIMO radar in multi-target tracking,this paper proposes a resource management optimization model,where the system resource consumption and the tracking accuracy requirements are considered comprehensively. An adaptive resource management algorithm for the co-located MIMO radar is obtained based on the proposed model, where the sub-array number, sampling period, transmitting energy, beam direction and working mode are adaptively controlled to realize the time-space resource joint allocation. Simulation results demonstrate the superiority of the proposed algorithm. Furthermore, the co-located MIMO radar using the proposed algorithm can satisfy the predetermined tracking accuracy requirements with less comprehensive cost compared with the phased array radar.
基金supported by the Ph.D.Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities(3072020GIP0803)Heilongjiang Province Key Laboratory Fund of High Accuracy Satellite Navigation and Marine Application Laboratory(HKL-2020-Y01)+2 种基金the National Natural Science Foundation of China(61571149)the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098)the Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology。
文摘This paper presents a co-time co-frequency fullduplex(CCFD)massive multiple-input multiple-output(MIMO)system to meet high spectrum efficiency requirements for beyond the fifth-generation(5G)and the forthcoming the sixth-generation(6G)networks.To achieve equilibrium of energy consumption,system resource utilization,and overall transmission capacity,an energy-efficient resource management strategy concerning power allocation and antenna selection is designed.A continuous quantum-inspired termite colony optimization(CQTCO)algorithm is proposed as a solution to the resource management considering the communication reliability while promoting energy conservation for the CCFD massive MIMO system.The effectiveness of CQTCO compared with other algorithms is evaluated through simulations.The results reveal that the proposed resource management scheme under CQTCO can obtain a superior performance in different communication scenarios,which can be considered as an eco-friendly solution for promoting reliable and efficient communication in future wireless networks.
基金Projects(61304184,61672221)supported by the National Natural Science Foundation of ChinaProject(2016JJ6010)supported by the Hunan Provincial Natural Science Foundation of China
文摘The crowdsourcing, as a service pattern in cloud environment, usually aims at the cross-disciplinary cooperation and creating value together with customers and becomes increasingly prevalent. Software process, as a kind of software development and management strategy, is defined as a series of activities implemented by software life cycle and provides a set of rules for various phases of the software engineering to achieve the desired objectives. With the current software development cycle getting shorter, facing more frequent needs change and fierce competition, a new resource management pattern is proposed to respond to these issues agilely by introducing the crowdsourcing service to agile software development for pushing the agility of software process. Then, a user-oriented resource scheduling method is proposed for rational use of various resources in the process and maximizing the benefits of all parties. From the experimental results, the proposed pattern and resources scheduling method reduces greatly the resource of project resource manager and increases the team resource utilization rate, which greatly improves the agility of software process and delivers software products quickly in crowdsourcing pattern.
基金This project was supported bythe National Natural Science Foundation of China (60272079) the National High Technol-ogy Research and Development Plan Project of China (2001AA123014) .
文摘A power allocation scheme for multi-user multiple-input multiple-output orthogonal frequency division multiplexing (MI- MO-OFDM) systems with channel state information (CSI) on transmitter and receiver is pressed. Multi-user lower allocation can be decoupled into single user lower allocation throughout null space mapping of multi-user channel and lower allocation can be performed throughout spatial-spectral water-filling for per user.To deal with more users in system and fading correlation,scheduling is oerformed to maintain the gain of power allocation.The proposed scheme can substantially improve system's spectral efficiency with low complexity.Simulation results validate the accuracy of theoretic analyses.