期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
基于改进YOLOv7-tiny的车辆目标检测算法
1
作者 赵海丽 许修常 潘宇航 《兵工学报》 北大核心 2025年第4期101-111,共11页
为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级... 为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级高效层聚合网络(Efficient Layer Aggregation Network-Tiny,ELAN-T)模块进行轻量化改进;通过削减分支,对特征融合网络的ELAN-T模块进行轻量化改进,降低网络的参数量和计算量,并对特征融合网络的结构进行重新构造;引入高效通道注意力机制和EIOU边界框损失函数提升算法的精度。在预处理后的UA-DETRAC数据集上实验,改进后的算法参数量相比于原始的YOLOv7-tiny算法降低了15.1%,计算量降低了5.3%,mAP@0.5提升了5.3个百分点。实验结果表明,改进后的算法不仅实现了轻量化,而且检测精度有所提升,适合部署在边缘终端设备上,完成对道路中车辆的检测任务。 展开更多
关键词 车辆检测 YOLOv7-tiny算法 深度强力残差卷积块 轻量级高效层聚合网络模块
在线阅读 下载PDF
多源信息融合的电机小样本故障诊断
2
作者 贾晗 尚前明 金华标 《机械科学与技术》 北大核心 2025年第5期847-856,共10页
在实际的工程应用中,电机故障发生的频率极低,电机的故障数据通常较少,正常数据与故障数据存在严重的比例失衡,这对基于数据驱动的电机故障诊断方法提出了挑战。针对这一问题,该文提出一种多源信息融合的电机故障诊断方法。首先,采用快... 在实际的工程应用中,电机故障发生的频率极低,电机的故障数据通常较少,正常数据与故障数据存在严重的比例失衡,这对基于数据驱动的电机故障诊断方法提出了挑战。针对这一问题,该文提出一种多源信息融合的电机故障诊断方法。首先,采用快速谱峭度的特征提取方法将电机定子电流信号和振动加速度信号转化为谱峭度特征图像;其次,搭建一种双通道残差网络模型融合振动信号和电流信号的故障特征并完成故障分类;最后,利用实验台架所采集的5种故障电机数据对多源信息融合的故障诊断方法进行了验证。研究结果表明:在故障数据严重缺失的情况下,故障诊断准确度可以达到95%以上,远高于传统的基于数据驱动的故障诊断方法,同时该方法还可以同样应用于旋转机械设备的故障诊断,具备良好的泛化性。 展开更多
关键词 故障诊断 信息融合 快速谱峭度法 残差神经网络 卷积注意力模块
在线阅读 下载PDF
基于样本优化与深度特征提取的滑坡易发性评价
3
作者 徐金鸿 李清泉 +1 位作者 韦春桃 赵芹 《水土保持通报》 北大核心 2025年第2期190-200,210,共12页
[目的]探究滑坡易发性评价中准确的非滑坡样本采样方法和特征提取优异的评价模型,为区域滑坡防控工作提供理论支持和科学指导。[方法]在缓冲区采样策略的基础上提出了一种基于卷积自编码器(convolutional auto-encoder,CAE)的非滑坡样... [目的]探究滑坡易发性评价中准确的非滑坡样本采样方法和特征提取优异的评价模型,为区域滑坡防控工作提供理论支持和科学指导。[方法]在缓冲区采样策略的基础上提出了一种基于卷积自编码器(convolutional auto-encoder,CAE)的非滑坡样本优化方法。该方法通过学习滑坡样本的特征,利用重构误差筛选和优化非滑坡样本。在评价模型方面,引入卷积注意力模块(convolutional block attention module,CBAM)到残差网络(ResNet)中,构建ResNet-CBAM滑坡易发性评价模型,以捕捉更深层次、更复杂且更具代表性的特征。试验以三峡库区重庆市万州区为研究区域,选取高程等12个影响因子,采用SVM,DNN,CNN和ResNet-CBAM 4种模型,对缓冲区采样和基于CAE优化采样的评价精度和结果进行对比分析。[结果]在相同评价模型下,基于CAE优化的非滑坡样本采样策略具有更高的可靠性与准确性;在相同采样策略下,ResNet-CBAM模型在准确率、精确率、召回率、F_(1)分数和AUC等指标上均优于其他模型;各模型的评价结果具有相似性,高易发区和极高易发区主要分布在长江沿岸等植被覆盖度低、人类活动频繁的区域,使用了基于CAE优化采样的ResNet-CBAM模型表现出更优的预测效果,更适宜于该区域的滑坡易发性评价研究。[结论]万州区滑坡易发性指数较高,区域内存在大量潜在滑坡风险区。基于CAE优化的非滑坡样本采样策略和ResNet-CBAM评价模型能有效提高滑坡易发性评价的精度。 展开更多
关键词 滑坡易发性评价 非滑坡样本 卷积自编码器 残差网络 卷积注意力模块
在线阅读 下载PDF
结合ResNet和CBAM的静态图像行为识别方法
4
作者 高晗 万方杰 马明旭 《郑州大学学报(理学版)》 北大核心 2025年第3期65-71,共7页
针对静态图像行为识别缺乏大规模训练数据集和无法利用时空特征所导致的识别效果不佳问题,提出一种结合残差神经网络(residual neural network,ResNet)和卷积注意力模块(convolutional block attention module,CBAM)的静态图像行为识别... 针对静态图像行为识别缺乏大规模训练数据集和无法利用时空特征所导致的识别效果不佳问题,提出一种结合残差神经网络(residual neural network,ResNet)和卷积注意力模块(convolutional block attention module,CBAM)的静态图像行为识别方法。使用特定数据增强技术对数据集进行扩充,采用迁移学习方法对模型初始化,并进行微调训练提升对静态图像行为识别的特征表达能力。通过将CBAM嵌入ResNet的第1个卷积层后来调整模型注意力,利用Grad-CAM方法提取模型识别图像时关注区域并进行可视化,对精度提升进行了解释。在PPMI数据集上,所提方法在演奏乐器类、持有乐器类和总类的平均识别精度分别达到88.30%、81.94%和77.93%,验证了方法的有效性。 展开更多
关键词 残差网络 行为识别 卷积注意力模块 静态图像 迁移学习
在线阅读 下载PDF
基于逐次变分模态分解和CBAM-ResNet的滚动轴承故障诊断方法
5
作者 陈志刚 陶子纯 +1 位作者 王衍学 史梦瑶 《振动与冲击》 北大核心 2025年第4期298-304,312,共8页
针对噪声背景下滚动轴承信号故障特征提取与智能诊断问题,提出基于逐次变分模态分解(successive variational mode decomposition,SVMD)以及注意力机制-残差神经网络(convolutional block attention module-residual neural network,CBA... 针对噪声背景下滚动轴承信号故障特征提取与智能诊断问题,提出基于逐次变分模态分解(successive variational mode decomposition,SVMD)以及注意力机制-残差神经网络(convolutional block attention module-residual neural network,CBAM-ResNet)的轴承故障诊断方法。首先对轴承振动信号进行SVMD分解成一系列本征模态分量,根据包络熵和峭度融合评价指标选择含故障特征明显的模态分量并重构;将重构信号进行短时傅里叶变换得到时频图像。之后利用CBAM能够自适应捕捉图形特征的特点,把重构信号的时频图像输入CBAM-ResNet模型进行特征提取和故障模式识别。在CBAM-ResNet模型训练过程中,使用迁移学习的方法初始化ResNet模型的参数来提高模型的泛化性。与其他传统模型相比,该研究的分类准确率高达96.68%,具有更强的故障特征提取能力。试验结果表明,CBAM-ResNet模型在变工况环境下也具有较高的识别精度。 展开更多
关键词 故障诊断 滚动轴承 逐次变分模态分解 卷积注意力模块 残差神经网络
在线阅读 下载PDF
基于残差BiLSTM和改进CBAM的航迹关联方法
6
作者 贾燎原 曹伟 +2 位作者 张晓峰 陆翔 周恒亮 《火力与指挥控制》 北大核心 2025年第2期100-106,115,共8页
针对目前智能航迹关联算法关联准确率较低的问题,提出一种由残差网络、双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)与改进的卷积注意力模块(improved convolutional block attention module,ICBAM)结合而成的残差... 针对目前智能航迹关联算法关联准确率较低的问题,提出一种由残差网络、双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)与改进的卷积注意力模块(improved convolutional block attention module,ICBAM)结合而成的残差BiLSTM-ICBAM航迹关联模型。在BiLSTM模型的基础上引入残差网络,增强模型提取航迹上下游特征的同时抑制网络退化问题;加入改进的CBAM注意力模块,分析输入信息与当前航迹特征的相关性并突出关键特征的影响,进而增强局部特征提取能力以及误差跟踪能力;在航迹关联数据上的实验结果表明,残差BiLSTM-ICBAM航迹关联模型比现有方法在准确率、稳定性中表现出了明显的性能优势。 展开更多
关键词 航迹关联 残差网络 双向长短时记忆神经网络 卷积注意力模块
在线阅读 下载PDF
融合Inception V1-CBAM-CNN的轴承剩余寿命预测模型 被引量:7
7
作者 余江鸿 彭雄露 +2 位作者 刘涛 杨文 叶帅 《机电工程》 北大核心 2024年第1期107-114,共8页
针对现有的滚动轴承剩余寿命(RUL)预测方法精度低、轴承健康指标(HI)构建困难等问题,提出了一种基于卷积神经网络(CNN)并融合Inception V1模块和卷积注意力机制模块(CBAM)的滚动轴承RUL预测模型。首先,在CNN中添加了CBAM机制,并进行了... 针对现有的滚动轴承剩余寿命(RUL)预测方法精度低、轴承健康指标(HI)构建困难等问题,提出了一种基于卷积神经网络(CNN)并融合Inception V1模块和卷积注意力机制模块(CBAM)的滚动轴承RUL预测模型。首先,在CNN中添加了CBAM机制,并进行了加权处理,在通道和空间维度对重要特征进行了强化,对次要特征进行了抑制,通过添加改进的InceptionV1模块,提高了CNN通道间信息交互水平,全面提取了退化特征;然后,进行了网络优化,采用全局最大池化(GMP)方法对模型进行了简化,采用Dropout和批量归一化(BN)方法,避免了过拟合,提高了精度,且克服了训练时出现的梯度消失问题;最后,对数据进行了处理,将降噪后的信号重组为三维张量,将其作为HI,构建了退化标签,引入了评价指标,采用PHM2012轴承数据集进行了实验验证,在3种工况下将其与深度神经网络(DNN)、CNN方法、结合注意力机制的残差网络方法(ResNet)进行了对比。研究结果表明:该方法在变负载条件下的平均RMSE为0.033,较其他方法的RMSE值分别降低了86%、78%和69%,在预测精度和泛化能力方面具有明显优势。 展开更多
关键词 滚动轴承 剩余使用寿命 Inception V1模块 卷积注意力机制模块 卷积神经网络 全局最大池化 批量归一化
在线阅读 下载PDF
基于残差卷积网络的多传感器融合永磁同步电机故障诊断 被引量:4
8
作者 邱建琪 沈佳晨 +2 位作者 史涔溦 史婷娜 李鸿杰 《电机与控制学报》 EI CSCD 北大核心 2024年第7期24-33,42,共11页
作为工业生产与日常生活的常见设备,永磁同步电机的故障诊断研究具有十分重要的意义。以永磁同步电机的匝间短路、退磁、轴承故障为诊断目标,提出一种新型的多传感器特征融合网络(MSFFN),结合多传感器融合技术与卷积神经网络实现永磁同... 作为工业生产与日常生活的常见设备,永磁同步电机的故障诊断研究具有十分重要的意义。以永磁同步电机的匝间短路、退磁、轴承故障为诊断目标,提出一种新型的多传感器特征融合网络(MSFFN),结合多传感器融合技术与卷积神经网络实现永磁同步电机的可靠故障诊断。网络采用2个带有残差模块的卷积神经网络,对输入的电流信号与振动信号并行提取隐藏特征,并设计一种中间特征融合模块(IFFM)有效融合电流和振动的各层隐藏特征,IFFM基于注意力机制对网络中的电流特征与振动特征进行筛选,自适应关注不同信号的内在相关特征,以实现更好的诊断效果。搭建了故障样机测试平台进行数据采集与实验验证,实验结果表明,提出方法具有更高的诊断准确率,同时在叠加了强噪声的条件下,具备更强的抗干扰能力。 展开更多
关键词 多传感器融合 卷积神经网络 中间特征融合模块 残差模块 永磁同步电机 故障诊断
在线阅读 下载PDF
基于GRU-DRSN的双通道人体活动识别 被引量:1
9
作者 邵小强 原泽文 +3 位作者 杨永德 刘士博 李鑫 韩泽辉 《科学技术与工程》 北大核心 2024年第2期676-683,共8页
人体活动识别(human activity recognizition, HAR)在医疗、军工、智能家居等领域有很大的应用空间。传统机器学习方法特征提取难度较大且精度不高。针对上述问题并结合传感器时序特性,提出了一种融合CBAM(convolutional block attentio... 人体活动识别(human activity recognizition, HAR)在医疗、军工、智能家居等领域有很大的应用空间。传统机器学习方法特征提取难度较大且精度不高。针对上述问题并结合传感器时序特性,提出了一种融合CBAM(convolutional block attention module)注意力机制的GRU-DRSN双通道并行模型,有效避免了传统串行模型因网络深度加深引起梯度爆炸和消失问题。同时并行结构使得两条支路具有相同的优先级,使用深度残差收缩网络(deep residual shrinkage network, DRSN)提取数据的深层空间特征,同时使用门控循环结构(gated recurrent unit, GRU)学习活动样本在时间序列上的特征,同时进行提取样本不同维度的特征,并通过CBAM模块进行特征的权重分配,最后通过Softmax层进行识别,实现了端对端的人体活动识别。使用公开数据集(wireless sensor data mining, WISDM)进行验证,模型平均精度达到了97.6%,与传统机器学习模型和前人所提神经网络模型相比,有更好的识别效果。 展开更多
关键词 人体活动识别(human activity recognizition HAR) 门控循环结构(gated recurrent unit GRU) 深度残差收缩网络(deep residual shrinkage network DRSN) CBAM 双通道并行
在线阅读 下载PDF
面向超分辨率重建的层次间局部特征增强网络
10
作者 王晓峰 黄煜婷 +2 位作者 张文尉 张轩 陈东方 《计算机工程与设计》 北大核心 2024年第8期2407-2414,共8页
基于卷积神经网络的超分辨率重建模型以单项传播为主,层次越靠后感知信息的能力越微弱,导致层次间局部特征部分丢失,难以实质提升网络的特征表达能力。针对此问题,提出层次间局部特征增强网络。该方法由级联残差模块、层次间特征增强块... 基于卷积神经网络的超分辨率重建模型以单项传播为主,层次越靠后感知信息的能力越微弱,导致层次间局部特征部分丢失,难以实质提升网络的特征表达能力。针对此问题,提出层次间局部特征增强网络。该方法由级联残差模块、层次间特征增强块和特征感知注意力机制组成。级联残差模块通过有效残差连接增加对残差分支信息的利用;层次间特征增强块提取不同深度特征的依赖关系,自适应调整中间层特征权值增强捕获关键信息的能力;特征感知注意力机制采用方向感知和位置判断的方式准确定位和识别感兴趣对象。多项标准数据集的实验结果表明,该方法能改善超分辨率的视觉重建效果,整体性能优于现有方法。 展开更多
关键词 卷积神经网络 超分辨率 局部特征增强 级联残差模块 注意力机制 方向感知 位置判断
在线阅读 下载PDF
基于并联自适应残差网络与CBAM的ECT图像重建 被引量:2
11
作者 马敏 吴环 《计量学报》 CSCD 北大核心 2024年第2期214-221,共8页
为解决电容层析成像中软场效应导致重建图像精度低的问题,提出了一种基于并联自适应残差网络与卷积注意力机制的图像重建算法。通过引入并联自适应残差模块提取丰富的特征层信息,再利用压缩激励网络调整各通道的权重系数,达到过滤冗余... 为解决电容层析成像中软场效应导致重建图像精度低的问题,提出了一种基于并联自适应残差网络与卷积注意力机制的图像重建算法。通过引入并联自适应残差模块提取丰富的特征层信息,再利用压缩激励网络调整各通道的权重系数,达到过滤冗余信息的效果,引入卷积注意力机制学习浅层特征的通道和空间信息,将卷积注意力机制通道与并联自适应残差网络进行特征融合以补偿损失的浅层特征和空间信息。仿真结果表明,相比LBP算法、Landweber迭代算法、1D CNN算法,改进算法有效提高了重建质量。 展开更多
关键词 多相流测量 电容层析成像 图像重建 并联自适应残差网络 卷积注意力机制
在线阅读 下载PDF
基于注意力机制轻量化模型的植物病害识别方法
12
作者 苏航 陈旭昊 +3 位作者 寿德荣 张朝阳 许彪 孙丙宇 《江苏农业学报》 CSCD 北大核心 2024年第8期1389-1399,共11页
针对现有植物病害识别模型存在响应速度慢、参数量多、计算机内存资源消耗大等问题,本研究提出了一种轻量化神经网络模型,该模型由特征提取层、特征增强层和分类器组成。为了减小模型大小并提高网络响应速度,在特征提取层中使用深度可... 针对现有植物病害识别模型存在响应速度慢、参数量多、计算机内存资源消耗大等问题,本研究提出了一种轻量化神经网络模型,该模型由特征提取层、特征增强层和分类器组成。为了减小模型大小并提高网络响应速度,在特征提取层中使用深度可分离卷积进行特征提取。为了防止网络传播过程中的梯度消失并增强病害像素特征融合,在特征提取层中引入了大卷积核倒置残差结构(IRBCKS)模块。此外,在特征增强层集成了轻量级卷积块注意力模块(CBAM)注意力机制,以捕捉植物病害相关图像中像素之间的关系,增强关键信息的提取。最后,采用剪枝技术剔除模型中冗余特征信息,从而再次减少模型参数量,形成最终的轻量级网络模型Cut-MobileNet。为验证该模型的先进性,将其与轻量化模型(MobileNet V2、SqueezeNet、GoogLeNet)和非轻量化模型(Vision Transformer、AlexNet)进行性能对比,研究结果表明,Cut-MobileNet在浮点运算量、准确率、单张图片推理时间、参数量、F1值和模型大小等性能指标上都取得了较优的效果。 展开更多
关键词 模型剪枝 卷积块注意力模块(CBAM)注意力机制 大卷积核倒置残差结构(IRBCKS)模块 植物病害 轻量化网络
在线阅读 下载PDF
基于改进U型神经网络的脑出血CT图像分割 被引量:5
13
作者 胡敏 周秀东 +2 位作者 黄宏程 张光华 陶洋 《电子与信息学报》 EI CSCD 北大核心 2022年第1期127-137,共11页
针对脑出血CT图像病灶部位的多尺度性导致分割精度较低的问题,该文提出一种基于改进U型神经网络的图像分割模型(AU-Net+)。首先,该模型利用U-Net中的编码器对脑出血CT图像特征编码,将提出的残差八度卷积(ROC)块应用到U型神经网络的跳跃... 针对脑出血CT图像病灶部位的多尺度性导致分割精度较低的问题,该文提出一种基于改进U型神经网络的图像分割模型(AU-Net+)。首先,该模型利用U-Net中的编码器对脑出血CT图像特征编码,将提出的残差八度卷积(ROC)块应用到U型神经网络的跳跃连接部分,使不同层次的特征更好地融合;其次,对融合后的特征,分别引入混合注意力机制,用以提高对目标区域的特征提取能力;最后,通过改进Dice损失函数进一步加强模型对脑出血CT图像中小目标区域的特征学习力度。为验证模型的有效性,在脑出血CT图像数据集上进行实验,同U-Net,Attention U-Net,UNet++以及CE-Net相比,mIoU指标分别提升了20.9%,3.6%,7.0%,3.1%,表明AU-Net+模型具有更好的分割效果。 展开更多
关键词 脑出血CT图像分割 注意力机制 Dice损失函数 残差八度卷积模块
在线阅读 下载PDF
基于生成对抗与卷积神经网络的调制识别方法 被引量:11
14
作者 邵凯 朱苗苗 王光宇 《系统工程与电子技术》 EI CSCD 北大核心 2022年第3期1036-1043,共8页
自动调制识别在频谱监测和认知无线电中占有重要地位。针对现有调制识别算法在低信噪比条件下识别率低的问题,提出一种基于生成对抗网络(generative adversarial network, GAN)和卷积神经网络(convolutional neural network, CNN)的数... 自动调制识别在频谱监测和认知无线电中占有重要地位。针对现有调制识别算法在低信噪比条件下识别率低的问题,提出一种基于生成对抗网络(generative adversarial network, GAN)和卷积神经网络(convolutional neural network, CNN)的数字信号调制识别方法。在利用平滑伪Wigner-Ville分布将调制信号转换为时频图像(time-frequency images, TFIs)后,在经典GAN中嵌入了剩余密集块(residual dense block, RDB)结构,保证了对TFIs的去噪和修复。通过对经典的剩余网络(residual network, ResNet)模型微调,满足了TFIs的识别与分类。仿真结果表明,所提方法在低信噪比情况下有效地降低了噪声对TFIs的干扰,提高了识别性能。 展开更多
关键词 自动调制识别 时频分布 卷积神经网络 生成对抗网络 剩余密集块
在线阅读 下载PDF
基于MDM-ResNet的脑肿瘤分类方法 被引量:7
15
作者 夏景明 邢露萍 +1 位作者 谈玲 宣大伟 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2022年第2期212-219,共8页
脑肿瘤是世界上最致命的癌症之一.由于脑肿瘤的多样性,其图像分类成为了当代研究的热点.近年来,深度神经网络(DNN)常用于医学图像分类,但随着深度的增加网络会出现梯度消失和过拟合的问题,而残差网络(ResNet)通过引入恒等映射可以缓解... 脑肿瘤是世界上最致命的癌症之一.由于脑肿瘤的多样性,其图像分类成为了当代研究的热点.近年来,深度神经网络(DNN)常用于医学图像分类,但随着深度的增加网络会出现梯度消失和过拟合的问题,而残差网络(ResNet)通过引入恒等映射可以缓解这些问题.因此,本文基于ResNet提出了一种MDM-ResNet网络,该网络由多尺寸卷积核模块(Multi-size convolution kernel module)、双通道池化层(Dual-channel pooling layer)和多深度融合残差块(Multi-depth fusion residual block)组成.本文实验在Figshare数据集上展开,采用数据增强操作对图像进行预处理,并利用5倍交叉验证方法对网络性能进行评估.最终实验结果表明MDM-ResNet能够对脑膜瘤(Meningioma)、胶质瘤(Glioma)和垂体瘤(Pituitary tumor)进行有效分类. 展开更多
关键词 脑肿瘤 深度神经网络(DNN) 残差网络(ResNet) 多尺寸卷积核模块 双通道池化层 多深度融合残差块
在线阅读 下载PDF
基于Dy Res Net-CBAM网络的滚动轴承剩余寿命预测 被引量:3
16
作者 向玲 王凯伦 +2 位作者 胡爱军 朱浩伟 周福成 《中国工程机械学报》 北大核心 2023年第1期6-11,共6页
滚动轴承的工作状况关系到使用滚动轴承的机械能否正常运行,预测轴承的剩余使用寿命(RUL)是避免机械系统失效的关键。针对传统的轴承使用寿命预测方法无法自适应调节特征权重、提取有用特征,造成预测值误差过大的问题,提出了一种带有卷... 滚动轴承的工作状况关系到使用滚动轴承的机械能否正常运行,预测轴承的剩余使用寿命(RUL)是避免机械系统失效的关键。针对传统的轴承使用寿命预测方法无法自适应调节特征权重、提取有用特征,造成预测值误差过大的问题,提出了一种带有卷积块注意力模块(CBAM)的动态残差网络(Dy Res Net)用于预测轴承RUL。对振动信号进行快速傅里叶变换求得频域累积幅值特征,在动态残差网络中加入CBAM模块,并利用压缩激励模块进行特征细化得出预测结果,使用公开轴承数据集对所提模型进行评估。实验表明:与其他模型相比,Dy Res Net-CBAM模型能够充分提取特征信息,对轴承RUL预测的准确度高于其他模型。 展开更多
关键词 滚动轴承 剩余使用寿命 频域累积幅值 卷积块注意力模块(CBAM) 动态残差网络
在线阅读 下载PDF
联合超声甲状腺结节分割与分类的多任务方法研究 被引量:1
17
作者 刘侠 吕志伟 +2 位作者 王波 王狄 谢林浩 《智能系统学报》 CSCD 北大核心 2023年第4期764-774,共11页
针对超声图像中甲状腺结节多尺度、结节边缘模糊、良恶分类不平衡问题,提出一种联合超声甲状腺结节分割与分类的多任务方法。以全卷积网络作为主干共享网络,将提取到的浅层特征共享给多任务分支网络,在分割网络分支中,先加入深层卷积块... 针对超声图像中甲状腺结节多尺度、结节边缘模糊、良恶分类不平衡问题,提出一种联合超声甲状腺结节分割与分类的多任务方法。以全卷积网络作为主干共享网络,将提取到的浅层特征共享给多任务分支网络,在分割网络分支中,先加入深层卷积块,获取分割分支深层特征,再对深层特征进行上采样。本文提出一种改进卷积注意力模块的多尺度卷积注意力模块,将上采样结果与主干共享网络每个特征提取阶段经过带有多尺度卷积注意力模块跳跃连接后的特征张量进行拼接,减少结节边缘模糊问题,提高分割性能。同时将多尺度卷积注意力模块融入到分类分支中,优化分类性能。实验结果表明:本文所提多任务方法能有效提升分割和分类的精度,较单任务深度学习网络具有更优的分割与分类性能,能有效处理甲状腺结节多尺度、结节边缘模糊的问题,降低良恶分类不平衡带来的影响。 展开更多
关键词 深度学习 多任务学习 甲状腺结节超声图像 图像分割 图像分类 深层卷积块 多尺度卷积注意力模块 残差结构
在线阅读 下载PDF
矿井图像超分辨率重建研究 被引量:2
18
作者 王媛彬 刘佳 +1 位作者 郭亚茹 吴冰超 《工矿自动化》 CSCD 北大核心 2023年第11期76-83,120,共9页
受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。... 受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。提出了一种基于多尺度密集通道注意力超分辨率生成对抗网络(SRGAN)的矿井图像超分辨率重建算法。设计了多尺度密集通道注意力残差块替代SRGAN原有的残差块,采用2路并行且卷积核大小不同的密集连接块,可充分获取图像特征;融入高效通道注意力模块,加强对高频信息的关注度;采用深度可分离卷积对网络进行轻量化,抑制网络参数的增加;利用纹理损失约束网络训练,避免网络加深时产生伪影。在井下数据集和公共数据集上对提出的矿井图像超分辨率重建算法和经典超分辨率重建算法BICUBIC,SRCNN,SRRESNET,SRGAN进行实验,结果表明:所提算法在主客观评价上总体优于对比算法,网络参数较SRGAN减少了2.54%,峰值信噪比与结构相似度较经典算法指标均值分别提高了0.764 dB和0.05358,能更好地关注图像的纹理、轮廓等细节信息,重建图像更符合人眼视觉。 展开更多
关键词 矿井图像 超分辨率重建 超分辨率生成对抗网络 多尺度密集通道注意力残差块 高效通道注意力模块 深度可分离卷积 纹理损失
在线阅读 下载PDF
基于改进U-Net网络的海洋中尺度涡自动检测模型 被引量:4
19
作者 董子意 杜震洪 +3 位作者 吴森森 李亚东 张丰 刘仁义 《海洋学报》 CAS CSCD 北大核心 2022年第2期123-131,共9页
海洋中尺度涡对浮游生物的分布、能量和盐分的输送具有非常重要的影响,海洋中尺度涡的自动检测是监测、分析中尺度涡时空变化的重要基础。针对传统基于物理特征检测海洋中尺度涡的方法存在受限于人工设计参数导致精度不高的问题,本文依... 海洋中尺度涡对浮游生物的分布、能量和盐分的输送具有非常重要的影响,海洋中尺度涡的自动检测是监测、分析中尺度涡时空变化的重要基础。针对传统基于物理特征检测海洋中尺度涡的方法存在受限于人工设计参数导致精度不高的问题,本文依据海洋卫星反演的海表面高度图,提出了一种基于改进U-Net网络的海洋中尺度涡自动检测模型。该模型在海洋中尺度涡的特征提取阶段嵌入了卷积注意力机制,使得模型能够关注于海表面高度图中最具有类别区分度的区域,同时引入了残差学习机制解决了网络过深导致模型难以训练的问题。本文以南大西洋的卫星海表面高度数据集为例开展实验验证,结果表明,本文提出的模型海洋中尺度涡检测准确率达到了93.28%,显著优于EddyNet等现有模型。模型可为海洋学家通过海表面高度探测中尺度涡提供可靠技术方法。 展开更多
关键词 海洋中尺度涡 深度学习 语义分割 注意力机制 残差学习
在线阅读 下载PDF
基于多尺度特征融合网络的云和云阴影检测试验 被引量:2
20
作者 杨昌军 张秀再 +2 位作者 张晨 冯绚 刘瑞霞 《大气科学》 CSCD 北大核心 2021年第6期1187-1195,共9页
基于深度学习的高分辨率光学影像云检测过程中,云和云阴影及其边缘细节丢失较为严重,主要原因在于不同尺度空间语义信息特征融合存在不足。针对该问题,本文构建一种基于深度学习的多尺度特征融合网络(Multi-scale Feature Fusion Networ... 基于深度学习的高分辨率光学影像云检测过程中,云和云阴影及其边缘细节丢失较为严重,主要原因在于不同尺度空间语义信息特征融合存在不足。针对该问题,本文构建一种基于深度学习的多尺度特征融合网络(Multi-scale Feature Fusion Network,MFFN)的云和云阴影检测方法,该算法结合防止网络退化的残差神经网络模块(Res.block)、扩大网络感受野的多尺度卷积模块(MCM)和提取并融合不同尺度信息的多尺度特征模块(MFM)。试验表明,本算法能提取丰富的空间信息与语义信息,可取得较为精细的云与云阴影掩模,具有较高检测精度,其中云检测准确率达0.9796,云阴影检测准确率达0.8307。同时,该工作可为深度学习技术应用于业务云检测提供理论支持及技术储备。 展开更多
关键词 云检测 云阴影检测 残差模块(Res.block) 多尺度卷积 多尺度特征模块
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部