期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于逐次变分模态分解和CBAM-ResNet的滚动轴承故障诊断方法
1
作者 陈志刚 陶子纯 +1 位作者 王衍学 史梦瑶 《振动与冲击》 北大核心 2025年第4期298-304,312,共8页
针对噪声背景下滚动轴承信号故障特征提取与智能诊断问题,提出基于逐次变分模态分解(successive variational mode decomposition,SVMD)以及注意力机制-残差神经网络(convolutional block attention module-residual neural network,CBA... 针对噪声背景下滚动轴承信号故障特征提取与智能诊断问题,提出基于逐次变分模态分解(successive variational mode decomposition,SVMD)以及注意力机制-残差神经网络(convolutional block attention module-residual neural network,CBAM-ResNet)的轴承故障诊断方法。首先对轴承振动信号进行SVMD分解成一系列本征模态分量,根据包络熵和峭度融合评价指标选择含故障特征明显的模态分量并重构;将重构信号进行短时傅里叶变换得到时频图像。之后利用CBAM能够自适应捕捉图形特征的特点,把重构信号的时频图像输入CBAM-ResNet模型进行特征提取和故障模式识别。在CBAM-ResNet模型训练过程中,使用迁移学习的方法初始化ResNet模型的参数来提高模型的泛化性。与其他传统模型相比,该研究的分类准确率高达96.68%,具有更强的故障特征提取能力。试验结果表明,CBAM-ResNet模型在变工况环境下也具有较高的识别精度。 展开更多
关键词 故障诊断 滚动轴承 逐次变分模态分解 卷积注意力模块 残差神经网络
在线阅读 下载PDF
基于残差BiLSTM和改进CBAM的航迹关联方法
2
作者 贾燎原 曹伟 +2 位作者 张晓峰 陆翔 周恒亮 《火力与指挥控制》 北大核心 2025年第2期100-106,115,共8页
针对目前智能航迹关联算法关联准确率较低的问题,提出一种由残差网络、双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)与改进的卷积注意力模块(improved convolutional block attention module,ICBAM)结合而成的残差... 针对目前智能航迹关联算法关联准确率较低的问题,提出一种由残差网络、双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)与改进的卷积注意力模块(improved convolutional block attention module,ICBAM)结合而成的残差BiLSTM-ICBAM航迹关联模型。在BiLSTM模型的基础上引入残差网络,增强模型提取航迹上下游特征的同时抑制网络退化问题;加入改进的CBAM注意力模块,分析输入信息与当前航迹特征的相关性并突出关键特征的影响,进而增强局部特征提取能力以及误差跟踪能力;在航迹关联数据上的实验结果表明,残差BiLSTM-ICBAM航迹关联模型比现有方法在准确率、稳定性中表现出了明显的性能优势。 展开更多
关键词 航迹关联 残差网络 双向长短时记忆神经网络 卷积注意力模块
在线阅读 下载PDF
基于并联自适应残差网络与CBAM的ECT图像重建 被引量:1
3
作者 马敏 吴环 《计量学报》 CSCD 北大核心 2024年第2期214-221,共8页
为解决电容层析成像中软场效应导致重建图像精度低的问题,提出了一种基于并联自适应残差网络与卷积注意力机制的图像重建算法。通过引入并联自适应残差模块提取丰富的特征层信息,再利用压缩激励网络调整各通道的权重系数,达到过滤冗余... 为解决电容层析成像中软场效应导致重建图像精度低的问题,提出了一种基于并联自适应残差网络与卷积注意力机制的图像重建算法。通过引入并联自适应残差模块提取丰富的特征层信息,再利用压缩激励网络调整各通道的权重系数,达到过滤冗余信息的效果,引入卷积注意力机制学习浅层特征的通道和空间信息,将卷积注意力机制通道与并联自适应残差网络进行特征融合以补偿损失的浅层特征和空间信息。仿真结果表明,相比LBP算法、Landweber迭代算法、1D CNN算法,改进算法有效提高了重建质量。 展开更多
关键词 多相流测量 电容层析成像 图像重建 并联自适应残差网络 卷积注意力机制
在线阅读 下载PDF
改进卷积神经网络的SAR图像识别方法
4
作者 罗曼 李新 《空天预警研究学报》 CSCD 2024年第3期162-166,172,共6页
针对SAR图像存在散斑噪声且各个类别的区分度不高而导致的目标特征提取难的问题,提出了一种改进卷积神经网络的SAR图像识别方法.采用不同尺度的卷积层提取SAR图像特征,设计了一种多尺度特征提取模块,充分提取图像的隐含信息;对经典的残... 针对SAR图像存在散斑噪声且各个类别的区分度不高而导致的目标特征提取难的问题,提出了一种改进卷积神经网络的SAR图像识别方法.采用不同尺度的卷积层提取SAR图像特征,设计了一种多尺度特征提取模块,充分提取图像的隐含信息;对经典的残差神经网络残差块进行改进,设计了一种密集残差块结构,为后面层提供丰富的细节信息,保证输出特征的表达能力.最后在MSTAR数据集上进行了验证.实验结果表明,本文模型在测试集上的识别率达到了99.17%,优于其他方法.对测试集加入不同比例的椒盐噪声,本文模型比其他CNN识别率高,说明本文模型具有较好的鲁棒性. 展开更多
关键词 卷积神经网络 SAR图像 多尺度特征提取模块 密集残差块 鲁棒性
在线阅读 下载PDF
基于改进U型神经网络的脑出血CT图像分割 被引量:4
5
作者 胡敏 周秀东 +2 位作者 黄宏程 张光华 陶洋 《电子与信息学报》 EI CSCD 北大核心 2022年第1期127-137,共11页
针对脑出血CT图像病灶部位的多尺度性导致分割精度较低的问题,该文提出一种基于改进U型神经网络的图像分割模型(AU-Net+)。首先,该模型利用U-Net中的编码器对脑出血CT图像特征编码,将提出的残差八度卷积(ROC)块应用到U型神经网络的跳跃... 针对脑出血CT图像病灶部位的多尺度性导致分割精度较低的问题,该文提出一种基于改进U型神经网络的图像分割模型(AU-Net+)。首先,该模型利用U-Net中的编码器对脑出血CT图像特征编码,将提出的残差八度卷积(ROC)块应用到U型神经网络的跳跃连接部分,使不同层次的特征更好地融合;其次,对融合后的特征,分别引入混合注意力机制,用以提高对目标区域的特征提取能力;最后,通过改进Dice损失函数进一步加强模型对脑出血CT图像中小目标区域的特征学习力度。为验证模型的有效性,在脑出血CT图像数据集上进行实验,同U-Net,Attention U-Net,UNet++以及CE-Net相比,mIoU指标分别提升了20.9%,3.6%,7.0%,3.1%,表明AU-Net+模型具有更好的分割效果。 展开更多
关键词 脑出血CT图像分割 注意力机制 Dice损失函数 残差八度卷积模块
在线阅读 下载PDF
矿井图像超分辨率重建研究 被引量:1
6
作者 王媛彬 刘佳 +1 位作者 郭亚茹 吴冰超 《工矿自动化》 CSCD 北大核心 2023年第11期76-83,120,共9页
受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。... 受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。提出了一种基于多尺度密集通道注意力超分辨率生成对抗网络(SRGAN)的矿井图像超分辨率重建算法。设计了多尺度密集通道注意力残差块替代SRGAN原有的残差块,采用2路并行且卷积核大小不同的密集连接块,可充分获取图像特征;融入高效通道注意力模块,加强对高频信息的关注度;采用深度可分离卷积对网络进行轻量化,抑制网络参数的增加;利用纹理损失约束网络训练,避免网络加深时产生伪影。在井下数据集和公共数据集上对提出的矿井图像超分辨率重建算法和经典超分辨率重建算法BICUBIC,SRCNN,SRRESNET,SRGAN进行实验,结果表明:所提算法在主客观评价上总体优于对比算法,网络参数较SRGAN减少了2.54%,峰值信噪比与结构相似度较经典算法指标均值分别提高了0.764 dB和0.05358,能更好地关注图像的纹理、轮廓等细节信息,重建图像更符合人眼视觉。 展开更多
关键词 矿井图像 超分辨率重建 超分辨率生成对抗网络 多尺度密集通道注意力残差块 高效通道注意力模块 深度可分离卷积 纹理损失
在线阅读 下载PDF
基于深度学习的黄丘区正负地形分割 被引量:2
7
作者 赵子林 韩磊 +3 位作者 陈芮 赵永华 李亚北 康宏亮 《水土保持研究》 CSCD 北大核心 2023年第5期21-30,共10页
[目的]基于深度学习,实现大范围、高精度的正负地形分割,正负地形的有效分割对黄土高原水土流失治理及生态恢复重建具有重要的理论价值和指导意义。[方法]在黄土高原丘陵区选取典型样区,采用中分辨率DEM数据制作地形分割数据集,构建了改... [目的]基于深度学习,实现大范围、高精度的正负地形分割,正负地形的有效分割对黄土高原水土流失治理及生态恢复重建具有重要的理论价值和指导意义。[方法]在黄土高原丘陵区选取典型样区,采用中分辨率DEM数据制作地形分割数据集,构建了改进Unet的黄丘区正负地形分割模型,该模型以Unet模型结构为基础,引入残差模块替换卷积模块加深网络结构,增加了地形信息的提取;结合卷积注意力模块,排除无用信息增加了模型抗干扰性;优化激活函数与损失函数,增强了模型鲁棒性与精度。[结果]坡面畸变邻域判断法地形分割总体精度为70.3%,在深度学习模型中,改进型Unet深度学习模型效果最优,相较于Unet模型与Res-Unet模型都有一定的提升,总体精度达到了86.2%。[结论]与传统的坡面畸变邻域判断法比较,基于深度学习的网络模型分割结果精度评价指标均较优,并验证了改进Unet的黄丘区正负地形分割模型的有效性。 展开更多
关键词 正负地形分割 深度学习 Unet 残差模块 卷积注意力
在线阅读 下载PDF
基于LSTM的递归网络图像去雨算法 被引量:2
8
作者 谷腾飞 赖惠成 +1 位作者 高古学 倪萍 《激光杂志》 CAS 北大核心 2022年第7期65-69,共5页
随着深度学习的发展的热潮,单幅图像去雨得到了很大的发展。然而由于雨图像在方向、大小和雨密度的雨纹的不同,使得去雨的工作变得更困难。针对以上问题,提出了一种基于LSTM的递归图像去雨算法,在特征提取方面采用卷积块和残差块相结合... 随着深度学习的发展的热潮,单幅图像去雨得到了很大的发展。然而由于雨图像在方向、大小和雨密度的雨纹的不同,使得去雨的工作变得更困难。针对以上问题,提出了一种基于LSTM的递归图像去雨算法,在特征提取方面采用卷积块和残差块相结合,并运用长短期记忆模块(LSTM)进行多层递归去雨,最后通过注意力融合模块进一步提取雨纹特征,对不同方向、大小等雨纹有较强的学习能力,较好地保留了图像的细节,通过在真实数据集和合成数据集上进行实验,证明了该方法的有效性,通过与其他算法的比较,在客观指标和主观效果上优于它们。主观效果去雨更彻底,图像细节更加清晰。在合成数据集Rain100H上PSNR达到30.48,SSIM为0.91,在Rain100L上PSNR达到38.05,SSIM为0.98。 展开更多
关键词 注意力融合(AF)模块 多层递归尺度卷积 长短期记忆 残差块
在线阅读 下载PDF
改进的Faster-RCNN算法在聚乙烯管接头内部缺陷检测中的应用 被引量:5
9
作者 彭伊娟 王振超 张秋菊 《应用声学》 CSCD 北大核心 2023年第5期984-992,共9页
超声相控阵技术是目前聚乙烯管道热熔接头内部缺陷检测的一种主流方法。提出了基于注意力机制的改进Faster-RCNN目标检测网络用于超声相控阵D扫图聚乙烯管接头内部缺陷检测。针对聚乙烯管道热熔接头内部超声相控阵D扫图小缺陷较多、特... 超声相控阵技术是目前聚乙烯管道热熔接头内部缺陷检测的一种主流方法。提出了基于注意力机制的改进Faster-RCNN目标检测网络用于超声相控阵D扫图聚乙烯管接头内部缺陷检测。针对聚乙烯管道热熔接头内部超声相控阵D扫图小缺陷较多、特征信息容易丢失的问题,将残差网络(ResNet50)与特征金字塔网络(FPN)相结合作为骨干网络,并引入卷积注意力模块(CBAM)自适应细化特征。将SSD网络框架和Faster-RCNN网络框架用于模型训练和测试,使用VGG16、ResNet50、ResNet50+FPN、ACBM+ResNet50+FPN作为骨干网络依次对超声相控阵聚乙烯管道热熔对接接头内部缺陷样本进行训练对比。结果表明,改进的Faster-RCNN网络模型在聚乙烯管接头内部缺陷检测和分类方面有明显改进,对小缺陷的检测性能有了显著的提高。 展开更多
关键词 缺陷检测 超声相控阵 卷积注意力模块 残差网络 特征金字塔
在线阅读 下载PDF
一种基于姿态感知的电力人员穿戴识别残差网络 被引量:3
10
作者 常政威 蒲维 +3 位作者 吴杰 黄坤超 熊兴中 陈明举 《电讯技术》 北大核心 2022年第1期31-38,共8页
为有效利用机器视觉技术实现对电力作业人员穿戴规范进行准确识别,减少安全事故的发生,构建了一种基于姿态感知的穿戴规范识别复合残差网络。该复合网络首先将VGG(Visual Geometry Group)与分裂-转换-聚合(Split-Transfer-Agregation,S... 为有效利用机器视觉技术实现对电力作业人员穿戴规范进行准确识别,减少安全事故的发生,构建了一种基于姿态感知的穿戴规范识别复合残差网络。该复合网络首先将VGG(Visual Geometry Group)与分裂-转换-聚合(Split-Transfer-Agregation,STA)模块引入残差网络中,构建高性能的ResNeXt50基础网络模块。对ResNeXt50网络不同层次的残差特征图进行聚合与解码处理,实现对人体姿态的估计与关键区域的定位。将卷积块注意力模块(Convolutional Block Attention Module,CBAM)集成到ResNeXt50网络相邻卷积层之间,以提高目标特征的表述能力,从而实现对电力人员穿戴情况进行准确识别。在训练阶段,采用迁移学习实现对预训练网络的顶层参数进行修正,以解决穿戴设备样本图片不足的缺点,从而提高复合网络的识别准确率。通过与SDD、Res-Net50和Inception-v3网络进行对比实验发现,建立的复合网络获得了更高的平均精确率(Mean Average Precision,MAP)值,单帧识别耗时更小,能有效地实现弱小穿戴设备的识别。 展开更多
关键词 目标识别 姿态感知 残差网络 迁移学习 卷积块注意力模块
在线阅读 下载PDF
改进残差网络和迁移学习的齿轮箱故障诊断 被引量:2
11
作者 王一帆 郝如江 《国防交通工程与技术》 2023年第4期36-40,56,共6页
针对齿轮箱故障诊断问题,提出一种基于多尺度特征提取与融合混合注意力机制的残差网络模型。该模型直接对原始振动信号进行特征提取,通过增加混合注意力机制来增加网络深度,提取关键信息,提高网络稳定性与故障识别准确率;串联首层多尺... 针对齿轮箱故障诊断问题,提出一种基于多尺度特征提取与融合混合注意力机制的残差网络模型。该模型直接对原始振动信号进行特征提取,通过增加混合注意力机制来增加网络深度,提取关键信息,提高网络稳定性与故障识别准确率;串联首层多尺度特征提取模块,增加网络宽度,提取不同频率特征值的同时避免了梯度爆炸问题,最终故障诊断精度达到99.9%;通过噪声实验,验证网络具有较强鲁棒性。网络使用迁移学习的方式,解决了实际工业中数据量不足的问题,并验证了网络的泛化能力。所提网络具有公开性与实用性。 展开更多
关键词 残差网络 迁移学习 齿轮箱 故障诊断 混合注意力机制
在线阅读 下载PDF
基于改进YOLOv7-tiny的车辆目标检测算法
12
作者 赵海丽 许修常 潘宇航 《兵工学报》 2025年第4期101-111,共11页
为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级... 为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级高效层聚合网络(Efficient Layer Aggregation Network-Tiny,ELAN-T)模块进行轻量化改进;通过削减分支,对特征融合网络的ELAN-T模块进行轻量化改进,降低网络的参数量和计算量,并对特征融合网络的结构进行重新构造;引入高效通道注意力机制和EIOU边界框损失函数提升算法的精度。在预处理后的UA-DETRAC数据集上实验,改进后的算法参数量相比于原始的YOLOv7-tiny算法降低了15.1%,计算量降低了5.3%,mAP@0.5提升了5.3个百分点。实验结果表明,改进后的算法不仅实现了轻量化,而且检测精度有所提升,适合部署在边缘终端设备上,完成对道路中车辆的检测任务。 展开更多
关键词 车辆检测 YOLOv7-tiny算法 深度强力残差卷积块 轻量级高效层聚合网络模块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部