期刊文献+
共找到883篇文章
< 1 2 45 >
每页显示 20 50 100
Automatic modulation recognition of radiation source signals based on two-dimensional data matrix and improved residual neural network
1
作者 Guanghua Yi Xinhong Hao +3 位作者 Xiaopeng Yan Jian Dai Yangtian Liu Yanwen Han 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期364-373,共10页
Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ... Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR. 展开更多
关键词 Automatic modulation recognition Radiation source signals Two-dimensional data matrix residual neural network Depthwise convolution
在线阅读 下载PDF
基于BiLSTM-AM-ResNet组合模型的山西焦煤价格预测
2
作者 樊园杰 睢祎平 张磊 《中国煤炭》 北大核心 2025年第3期42-51,共10页
煤炭作为我国重要的基础能源,其价格的波动会直接影响国民经济发展与能源市场稳定,因此对煤炭价格进行预测具有重要意义。针对我国煤炭价格受政策与供求关系影响大、多呈现非线性的变化趋势,且目前存在的煤价预测方法存在滞后性大等问题... 煤炭作为我国重要的基础能源,其价格的波动会直接影响国民经济发展与能源市场稳定,因此对煤炭价格进行预测具有重要意义。针对我国煤炭价格受政策与供求关系影响大、多呈现非线性的变化趋势,且目前存在的煤价预测方法存在滞后性大等问题,以山西焦煤价格为研究对象,分析影响煤炭价格的多种因素,并利用先进的人工智能机器学习算法来解决煤价预测问题。综合双向长短期记忆网络、注意力机制和残差神经网络的优势,构建双向长短期残差神经网络(BiLSTM-AM-ResNet)进行山西焦煤价格预测实验。采集2012-2023年的山西焦煤价格周度数据作为实验数据,对其进行空缺值处理和归一化处理,绘制相关系数热图并确定模型输入特征类型,进而简化模型并提高预测准确率与预测速度。通过模型预测实验得出,经BiLSTM-AM-ResNet模型预测的山西焦煤价格与实际煤价的发展趋势有着较高的线性拟合性,且预测结果与真实煤价在数值上非常接近,预测准确率达到了95.08%。 展开更多
关键词 焦煤价格预测 长短期记忆网络 注意力机制 残差神经网络 相关性分析
在线阅读 下载PDF
Prediction about residual stress and microhardness of material subjected to multiple overlap laser shock processing using artificial neural network 被引量:9
3
作者 WU Jia-jun HUANG Zheng +4 位作者 QIAO Hong-chao WEI Bo-xin ZHAO Yong-jie LI Jing-feng ZHAO Ji-bin 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3346-3360,共15页
In this work,the nickel-based powder metallurgy superalloy FGH95 was selected as experimental material,and the experimental parameters in multiple overlap laser shock processing(LSP)treatment were selected based on or... In this work,the nickel-based powder metallurgy superalloy FGH95 was selected as experimental material,and the experimental parameters in multiple overlap laser shock processing(LSP)treatment were selected based on orthogonal experimental design.The experimental data of residual stress and microhardness were measured in the same depth.The residual stress and microhardness laws were investigated and analyzed.Artificial neural network(ANN)with four layers(4-N-(N-1)-2)was applied to predict the residual stress and microhardness of FGH95 subjected to multiple overlap LSP.The experimental data were divided as training-testing sets in pairs.Laser energy,overlap rate,shocked times and depth were set as inputs,while residual stress and microhardness were set as outputs.The prediction performances with different network configuration of developed ANN models were compared and analyzed.The developed ANN model with network configuration of 4-7-6-2 showed the best predict performance.The predicted values showed a good agreement with the experimental values.In addition,the correlation coefficients among all the parameters and the effect of LSP parameters on materials response were studied.It can be concluded that ANN is a useful method to predict residual stress and microhardness of material subjected to LSP when with limited experimental data. 展开更多
关键词 laser shock processing residual stress MICROHARDNESS artificial neural network
在线阅读 下载PDF
基于GAF-ResNet50的配电网故障区段定位
4
作者 石昱烜 席燕辉 张伟杰 《电力科学与技术学报》 北大核心 2025年第2期122-130,149,共10页
配电线路是现代电力系统的组成部分,直接影响着供电的安全和稳定。配电网故障定位分为对故障点的精准定位与区段定位两种。针对配电网结构的复杂性,提出基于GAF-ResNet50的配电网故障区段定位方法。该方法通过格拉姆角场算法,将一维时... 配电线路是现代电力系统的组成部分,直接影响着供电的安全和稳定。配电网故障定位分为对故障点的精准定位与区段定位两种。针对配电网结构的复杂性,提出基于GAF-ResNet50的配电网故障区段定位方法。该方法通过格拉姆角场算法,将一维时间序列转换成二维(Gramian angular field,GAF)图像,并利用残差神经网络的框架,从GAF图像中提取信号更深层次的故障特征,精确地辨识故障区域。为验证该方法的有效性,在MATLAB平台上搭建IEEE 13节点的配电网模型,对其产生故障数据进行故障区段的定位仿真。研究结果表明:该方法能够快速、准确地进行故障区段定位,其精度在98%以上,且该方法对噪声具有良好的鲁棒性。 展开更多
关键词 残差神经网络 配电网 格拉姆角场 域变换 故障定位
在线阅读 下载PDF
基于ResNet-DNN的滤波器组多载波系统信道估计与检测
5
作者 卢中奎 常俊 +1 位作者 王义元 刘俊虹 《计算机应用与软件》 北大核心 2025年第8期147-152,共6页
滤波器组多载波(FBMC)系统因频谱灵活性高以及高频谱效率受到广泛关注。针对FBMC系统存在固有的虚部干扰,导致信道估计困难,提出基于残差神经网络的两种FBMC系统信道估计与检测方案,方案一中采用残差神经网络对信道估计模块进行建模,完... 滤波器组多载波(FBMC)系统因频谱灵活性高以及高频谱效率受到广泛关注。针对FBMC系统存在固有的虚部干扰,导致信道估计困难,提出基于残差神经网络的两种FBMC系统信道估计与检测方案,方案一中采用残差神经网络对信道估计模块进行建模,完成稀疏信道时频响应矩阵到真实信道时频响应的逼近。方案二中采用残差神经网络对信道估计、信道均衡、OQAM解调及判决模块进行建模和集成。实验结果表明采用两种方案进行信道估计与检测相比传统信道估计算法有更好的误码率性能。 展开更多
关键词 滤波器组多载波 虚部干扰 残差神经网络 信道估计
在线阅读 下载PDF
基于1D-ResNet的沥青混合料光谱分类识别方法
6
作者 王晋军 周兴林 《现代电子技术》 北大核心 2025年第8期139-144,共6页
使用近红外光谱技术对沥青混合料的老化程度进行快速有效评估,对于沥青道路养护具有重要意义。为了实现不同老化程度沥青混合料的快速准确分类,提出一种基于一维残差卷积神经网络(1D-ResNet)的沥青混合料光谱分类方法。该方法是在卷积... 使用近红外光谱技术对沥青混合料的老化程度进行快速有效评估,对于沥青道路养护具有重要意义。为了实现不同老化程度沥青混合料的快速准确分类,提出一种基于一维残差卷积神经网络(1D-ResNet)的沥青混合料光谱分类方法。该方法是在卷积神经网络链式结构的基础上引入残差模块来构建1D-ResNet分类模型。首先对近红外光谱数据间隔平均,并进行二阶导数(2nd D)及标准正态变量变换(SNV)预处理;然后将归一化的平均光谱、2nd D光谱及SNV光谱进行光谱序列融合;最后将融合光谱数据作为模型的输入,实现对不同老化程度沥青混合料的分类。实验结果表明:对光谱数据进行间隔平均后,1D-ResNet模型分类准确率为88.38%,采用光谱序列融合后分类准确率达98.86%,能够实现对沥青混合料的准确分类识别。 展开更多
关键词 沥青混合料 光谱分类 一维残差卷积神经网络 光谱预处理 序列融合 间隔平均法
在线阅读 下载PDF
InvertResNet:基于深度学习和近红外光谱的药品定性分析方法
7
作者 黄天宇 杨辉华 李灵巧 《光谱学与光谱分析》 北大核心 2025年第8期2218-2227,共10页
分类或定性分析是药品溯源、真伪鉴别的关键技术。然而在实际应用中常面临近红外光谱数据的非线性特征、样本量不足、数据噪声干扰以及复杂的预处理过程等技术挑战。传统机器学习方法难以充分捕捉光谱数据中的深层次信息,导致分类性能... 分类或定性分析是药品溯源、真伪鉴别的关键技术。然而在实际应用中常面临近红外光谱数据的非线性特征、样本量不足、数据噪声干扰以及复杂的预处理过程等技术挑战。传统机器学习方法难以充分捕捉光谱数据中的深层次信息,导致分类性能有限。随着深度学习技术的迅速发展,其自动特征提取和处理能力为近红外光谱数据分析提供了新的解决途径。本研究提出一种名为InvertResNet的卷积神经网络:该方法首先将一维光谱数据转换为二维伪图像,并在转换过程中采用双线性插值法对数据进行填充,以确保二维化后的光谱数据完整性;InvertResNet在经典卷积神经网络(CNN)框架基础上,引入倒残差结构,通过先扩展后压缩特征维度,优化了模型的深度和宽度,在保持轻量级特性的同时,有效抑制了噪声干扰,并提升了特征提取和表达能力。该方法采用二维转换不仅解决了数据长度不足的问题,还保留了光谱数据的局部和全局空间相关性,从而增强了模型对复杂模式和非线性信息的识别能力。为全方位评估InvertResNet的性能,利用草莓泥近红外光谱数据集对该方法展开初步验证,结果显示其在草莓泥光谱数据处理中展现出良好适应性与初步有效性,为后续深入研究筑牢根基。此后,研究重点转向公开的药品近红外光谱分类数据集。在此数据集上,将本方法与传统的偏最小二乘法(PLS)、支持向量机(SVM)、随机森林(RF)、标准卷积神经网络(CNN)、Swin-Transformer模型(SwinTR)、GhostNetV2及基于Transformer架构的SpectraTr模型进行了对比测试。结果表明,在不同的训练样本比例下,InvertResNet均优于PLS等传统算法和标准CNN结构。在低训练样本比例的情况下,InvertResNet实现了95.97%的分类准确率,显著优于PLS-DA(79.39%)、SVM(68.44%)、RF(67.74%)、CNN(91.94%)、SwinTR(92.74%)和GhostNetV2(89.91%)。随着训练样本的增加,InvertResNet的分类准确率进一步提高,并在高比例训练样本条件下达到了100%,相比于其他模型,如CNN的98.39%、SwinTR的98.38%和GhostNetV2的98.39%,依然表现出明显的优势。综上所述,InvertResNet通过其创新的倒残差结构和二维光谱数据变化及增强方法,在药品近红外光谱分析中表现出色,显著提升了分类准确率,在近红外光谱分析领域的具有广阔的应用前景。 展开更多
关键词 近红外光谱 卷积神经网络 倒残差结构
在线阅读 下载PDF
基于逐次变分模态分解和CBAM-ResNet的滚动轴承故障诊断方法
8
作者 陈志刚 陶子纯 +1 位作者 王衍学 史梦瑶 《振动与冲击》 北大核心 2025年第4期298-304,312,共8页
针对噪声背景下滚动轴承信号故障特征提取与智能诊断问题,提出基于逐次变分模态分解(successive variational mode decomposition,SVMD)以及注意力机制-残差神经网络(convolutional block attention module-residual neural network,CBA... 针对噪声背景下滚动轴承信号故障特征提取与智能诊断问题,提出基于逐次变分模态分解(successive variational mode decomposition,SVMD)以及注意力机制-残差神经网络(convolutional block attention module-residual neural network,CBAM-ResNet)的轴承故障诊断方法。首先对轴承振动信号进行SVMD分解成一系列本征模态分量,根据包络熵和峭度融合评价指标选择含故障特征明显的模态分量并重构;将重构信号进行短时傅里叶变换得到时频图像。之后利用CBAM能够自适应捕捉图形特征的特点,把重构信号的时频图像输入CBAM-ResNet模型进行特征提取和故障模式识别。在CBAM-ResNet模型训练过程中,使用迁移学习的方法初始化ResNet模型的参数来提高模型的泛化性。与其他传统模型相比,该研究的分类准确率高达96.68%,具有更强的故障特征提取能力。试验结果表明,CBAM-ResNet模型在变工况环境下也具有较高的识别精度。 展开更多
关键词 故障诊断 滚动轴承 逐次变分模态分解 卷积注意力模块 残差神经网络
在线阅读 下载PDF
基于scSE非局部双流ResNet网络的行为识别 被引量:2
9
作者 李占利 王佳莹 +1 位作者 靳红梅 李洪安 《计算机应用与软件》 北大核心 2024年第8期319-325,共7页
针对双流网络对包含冗余信息的视频帧存在识别率低的问题,在双流网络的基础上引入scSE(Spatial and Channel Squeeze&Excitation Block)和非局部操作,构建SC_NLResNet行为识别框架。该框架将视频划分为等分不重叠的时序段并在每段... 针对双流网络对包含冗余信息的视频帧存在识别率低的问题,在双流网络的基础上引入scSE(Spatial and Channel Squeeze&Excitation Block)和非局部操作,构建SC_NLResNet行为识别框架。该框架将视频划分为等分不重叠的时序段并在每段上稀疏采样,提取RGB帧以及光流图作为scSE模块的输入;将经过scSE处理的特征输入非局部双流ResNet网络中,融合各分段得到最终的预测结果。在UCF101以及Hmdb51数据集上实验准确率分别达到96.9%和76.2%,结果表明,非局部操作与scSE模块结合可以增强特征时空上以及通道间的信息提高准确率,验证了SC_NLResNet网络的有效性。 展开更多
关键词 双流卷积神经网络 scSE模块 残差网络 非局部操作 行为识别
在线阅读 下载PDF
基于信号图像化和CNN-ResNet的配电网单相接地故障选线方法 被引量:4
10
作者 缪欣 张忠锐 +1 位作者 郭威 侯思祖 《中国测试》 CAS 北大核心 2024年第6期157-166,共10页
配电网发生单相接地故障时,零序电流呈现较强的非线性与非平稳性,故障选线较为困难,针对此问题,提出一种基于信号图像化和卷积神经网络-残差网络的配电网单相接地故障选线方法。首先,利用排列熵优化变分模态分解算法的参数,将零序电流... 配电网发生单相接地故障时,零序电流呈现较强的非线性与非平稳性,故障选线较为困难,针对此问题,提出一种基于信号图像化和卷积神经网络-残差网络的配电网单相接地故障选线方法。首先,利用排列熵优化变分模态分解算法的参数,将零序电流信号分解成一系列固有模态函数;其次,引入新的数据预处理方式,将固有模态函数转成二维图像,获得零序电流信号的时频特征图;最后,利用一维卷积神经网络提取零序电流信号的相关性和特征,利用残差网络提取时频特征图的特征,将两个网络融合,构建混合卷积神经网络结构,实现故障选线。仿真与实验结果表明,该方法能够在高阻接地、采样时间不同步、强噪声等情况下准确地选择出故障线路,可满足配电网对故障选线准确性和可靠性的需求。 展开更多
关键词 变分模态分解 卷积神经网络 残差网络 故障选线 排列熵
在线阅读 下载PDF
ResNet-UAN-AUD:基于深度学习的水声上行非正交多址通信系统活动用户检测方法 被引量:1
11
作者 王建平 陈光岚 +1 位作者 冯启高 马建伟 《传感技术学报》 CAS CSCD 北大核心 2024年第6期985-996,共12页
水下声学网络(Underwater Acoustic Networks,UAN)是探测未知水域的重要技术手段。非正交多址(Non-Orthogonal Multiple Access,NOMA)是一种新颖的移动通信技术,支持时域、频域、空域/编域的非正交分配,可有效地提高网络容量和用户接入... 水下声学网络(Underwater Acoustic Networks,UAN)是探测未知水域的重要技术手段。非正交多址(Non-Orthogonal Multiple Access,NOMA)是一种新颖的移动通信技术,支持时域、频域、空域/编域的非正交分配,可有效地提高网络容量和用户接入数,为性能和电量受限的UAN提供创新解决方案。活动用户检测(Active User Detection,AUD)是NOMA通信系统的基础支撑,对于NOMA系统消除信号干扰和提高接收性能至关重要。ResNet是基于残差模块跳跃连接的神经网络,解决了深度学习的梯度消失和网络退化问题。提出了一种基于深度学习的水声上行NOMA通信系统AUD检测方案。首先,构建水声上行NOMA通信系统基本模型;其次,实施NOMA活动用户检测问题的数学表征;接着,开发基于ResNet网络的水声NOMA系统活动节点检测方法(ResNet-UAN-AUD);最后,执行仿真实验。结果表明,ResNet-UAN-AUD的检测性能接近基于长短期记忆网络的活动用户检测(LSTM-UAN-AUD)方案,而复杂度略高于基于卷积神经网络的活动用户检测(CNN-UAN-AUD)技术,实现了次优目标,适合水声上行NOMA系统使用。 展开更多
关键词 水声网络 深度学习 残差神经网络(resnet) 活动用户检测 上行NOMA通信系统
在线阅读 下载PDF
基于ResNet-LSTM的航空发动机性能异常检测方法 被引量:1
12
作者 蔡舒妤 殷航 +1 位作者 史涛 范杰 《航空发动机》 北大核心 2024年第1期135-142,共8页
为了实现数据驱动的航空发动机性能异常的智能检测,提出了一种基于残差网络(ResNet)-长短期记忆网络(LSTM)的发动机性能异常检测方法。采用发动机性能数据图像化方法,在数据降维的同时,完备保留数据的关联特征和时序特征;以残差单元构... 为了实现数据驱动的航空发动机性能异常的智能检测,提出了一种基于残差网络(ResNet)-长短期记忆网络(LSTM)的发动机性能异常检测方法。采用发动机性能数据图像化方法,在数据降维的同时,完备保留数据的关联特征和时序特征;以残差单元构建发动机性能异常检测模型,在加深网络结构的同时,消除深层网络梯度消失问题,提高发动机性能图像空间关联特征的提取能力。同时,引入LSTM,提出基于ResNet-LSTM的发动机性能异常检测模型,通过ResNet与LSTM的融合,强化异常检测模型对时序特征的提取,提升发动机性能异常检测的准确率;通过发动机运行数据进行验证。结果表明:在训练集上,该方法的异常检测准确率为94.95%,比基于ResNet18、ResNet34、ResNet50异常检测模型的分别提高10.87%、8.00%、3.23%;在测试集上,该方法的异常检测准确率为92.15%,比基于ResNet18、ResNet34、ResNet50异常检测模型的分别提高11.81%、9.45%、3.78%。 展开更多
关键词 异常检测 残差网络 长短期记忆网络 航空发动机
在线阅读 下载PDF
基于ResNet残差神经网络识别的深部煤层显微组分和微裂缝分类——以鄂尔多斯盆地石炭系本溪组8~#煤层为例 被引量:1
13
作者 刘大锰 王子豪 +6 位作者 陈佳明 邱峰 朱凯 高羚杰 周柯宇 许少博 孙逢瑞 《石油与天然气地质》 CSCD 北大核心 2024年第6期1524-1536,共13页
显微组分和微裂缝是煤储层重要的微观特征,影响煤储层产气能力和力学性质。采集鄂尔多斯盆地深部煤层气井石炭系本溪组8^(#)煤层样品,运用ResNet残差神经网络识别方法,研究了显微组分和微裂缝发育特征。在煤样305个显微组分和65个微裂... 显微组分和微裂缝是煤储层重要的微观特征,影响煤储层产气能力和力学性质。采集鄂尔多斯盆地深部煤层气井石炭系本溪组8^(#)煤层样品,运用ResNet残差神经网络识别方法,研究了显微组分和微裂缝发育特征。在煤样305个显微组分和65个微裂缝图样本研究的基础上,建立了基于残差神经网络识别的煤岩显微组分和微裂缝识别方法,并利用残差神经网络技术对镜下数据进行反演,构建了深部煤储层显微组分和微裂缝的识别和分类模型。结合地质特征和聚类算法结果联合验证,模型具有可靠性。显微组分预测准确率为0.90,微裂缝预测准确率为0.80,可以有效预测煤岩显微组分和微裂缝类型。模型识别与预测表明裂缝形态与显微组分具有相关关系。裂缝的发育与显微组分中的镜质组关系最大,裂缝类别和数量的预测结果与显微组分发育的相吻合。 展开更多
关键词 分类模型 残差神经网络 显微组分 微裂缝 深部煤储层 煤层气 石炭系 鄂尔多斯盆地
在线阅读 下载PDF
基于改进Res-UNet的昼夜地基云图分割网络 被引量:1
14
作者 王铂越 李英祥 钟剑丹 《计算机应用》 CSCD 北大核心 2024年第4期1310-1316,共7页
针对昼夜地基云图在分割中细节信息丢失、分割精度低等问题,提出一种基于改进Res-UNet(Residual network-UNetwork)的昼夜地基云图分割网络CloudRes-UNet(Cloud ResNet-UNetwork),整体采用编码器-解码器的网络结构。首先,编码器使用ResN... 针对昼夜地基云图在分割中细节信息丢失、分割精度低等问题,提出一种基于改进Res-UNet(Residual network-UNetwork)的昼夜地基云图分割网络CloudRes-UNet(Cloud ResNet-UNetwork),整体采用编码器-解码器的网络结构。首先,编码器使用ResNet50提取特征,增强特征提取能力;其次,设计多级特征提取(Multi-Stage)模块,该模块结合分组卷积、膨胀卷积和通道打乱这3种技巧,获取高强度语义信息;再次,加入高效通道注意力(ECA‑Net)模块,在通道维度上聚焦重要信息,加强对地基云图中云区域的关注,提高分割精度;最后,解码器使用双线性插值对特征进行上采样,提高分割图像的清晰度并减少目标和位置信息丢失。实验结果表明,与当前基于深度学习表现较好的地基云图分割网络(Cloud-UNet)相比,CloudRes-UNet在昼夜地基云图分割数据集上的分割准确率提升了1.5个百分点,平均交并比(MIoU)上升了1.4个百分点,更准确地获取了云量信息,对天气预报、气候研究和光伏发电等方面具有积极意义。 展开更多
关键词 地基云图 语义分割 深度学习 高效通道注意力网络 resnet50 res-Unet
在线阅读 下载PDF
拉曼光谱结合WGANGP-ResNet算法鉴别病原菌种类 被引量:2
15
作者 孟星志 刘亚秋 刘丽娜 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第2期542-547,共6页
快速准确识别病原菌在防止传染病的传播、帮助对抗抗菌素耐药性和改善病人预后方面起着关键作用。拉曼光谱结合机器学习算法能够简单快捷地对病原菌进行无标记检测。然而,病原菌种类和表型繁多,并且深度学习需要依赖大量样本训练,而收... 快速准确识别病原菌在防止传染病的传播、帮助对抗抗菌素耐药性和改善病人预后方面起着关键作用。拉曼光谱结合机器学习算法能够简单快捷地对病原菌进行无标记检测。然而,病原菌种类和表型繁多,并且深度学习需要依赖大量样本训练,而收集大批量病原菌拉曼光谱劳神费力,且易受荧光等因素影响。针对上述问题,提出一种基于WGAN-GP数据增强方法和ResNet结合的病原菌拉曼光谱检测模型。采用五种常见眼科病原菌的拉曼光谱。将采集到的原始数据归一化作为ResNet和传统卷积神经网络(1D-CNN)的输入,将经过SG滤波、airPLS基线校正、PCA降维等预处理后的数据作为K近邻(KNN)的输入,对比分析发现ResNet模型效果最优,其分类精度可达96%;搭建Wasserstein生成式对抗网络加梯度惩罚模型(WGAN-GP),生成大量与真实数据相似的高分辨率光谱数据。同时与偏移法、深度卷积生成式对抗神经网络(DCGAN)2种数据增强方法进行比对,证明WGAN-GP的可靠性;为验证生成数据可以丰富数据多样性,进而提高分类精度,将扩充后的数据集重新放入ResNet进行训练,最终WGAN-GP结合ResNet的分类准确率提高到99.3%。结果表明:基于ResNet的分类模型无需复杂数据预处理,在开发效率和分类精度上均有提高;改进的WGAN-GP模型适用于拉曼光谱数据增强,解决了传统数据增强方法生成光谱的有效性与类别准确性不匹配的问题,相比于GAN提高了训练过程的速度和稳定性;利用表面增强拉曼光谱技术(SERS)结合WGANGP-ResNet模型对病原菌拉曼光谱分类,减少了对大量训练数据的需求,有利于快速学习和分析低信噪比的拉曼光谱,并将光谱采集时间缩减到1/10。在临床快速、免培养鉴别病原菌方面具有重要研究意义与应用价值。 展开更多
关键词 WGAN-GP 拉曼光谱 病原菌鉴别 一维残差网络 卷积神经网络
在线阅读 下载PDF
混凝土裂缝无损检测的改进ResNet方法 被引量:3
16
作者 程龙 张静缨 徐照 《人民长江》 北大核心 2024年第9期210-216,共7页
大型混凝土结构的灾难性事故多由微小裂缝发展而成,在混凝土结构服役期间对其进行裂缝检测十分重要。目前基于深度学习的混凝土裂缝无损检测算法飞速发展,但大多未考虑裂缝信息的本身特点,检测的准确性仍有进一步提升空间。为此,提出了... 大型混凝土结构的灾难性事故多由微小裂缝发展而成,在混凝土结构服役期间对其进行裂缝检测十分重要。目前基于深度学习的混凝土裂缝无损检测算法飞速发展,但大多未考虑裂缝信息的本身特点,检测的准确性仍有进一步提升空间。为此,提出了一种针对混凝土裂缝无损检测的改进ResNet方法,以残差神经网络ResNet为裂缝检测的基础模型,插入注意力机制模块,提高模型表征能力,使其能够有效捕捉裂缝图像中的重要特征信息,从而提高检测的准确性和鲁棒性。同时,采用迁移学习的策略,将ResNet模型在复杂数据集上的训练成果迁移到裂缝数据集,节约了训练时间和计算资源。结果表明:改进后的ResNet算法的裂缝检测准确率高达98.80%,比原始ResNet算法准确率提升了3.24%。相关经验可供类似改进算法的构建参考。 展开更多
关键词 混凝土裂缝 裂缝检测 残差神经网络 注意力机制 迁移学习
在线阅读 下载PDF
利用压电传感器基于GAF-ResNet的管道焊缝缺陷分类 被引量:2
17
作者 卫小龙 杜国锋 +2 位作者 余泽禹 袁洪强 马骐 《化工设备与管道》 CAS 北大核心 2024年第1期87-93,共7页
针对管道焊缝缺陷分类难度大的问题,提出了利用压电传感器数据,结合格拉姆角场(Gramian Angular Field,GAF)和残差神经网络(ResNet)的焊缝缺陷分类方法。先采用GAF原理将一维时间序列数据转化为二维图像,将转化后的二维图像数据集输入,... 针对管道焊缝缺陷分类难度大的问题,提出了利用压电传感器数据,结合格拉姆角场(Gramian Angular Field,GAF)和残差神经网络(ResNet)的焊缝缺陷分类方法。先采用GAF原理将一维时间序列数据转化为二维图像,将转化后的二维图像数据集输入,训练最优二维残差神经网络模型用于焊缝缺陷分类。实验中管道焊缝预制了10个缺陷(5种类型),使用导波和超声技术分别对焊缝中1-5号缺陷进行检测,分析Precision(精确率)、Recall(召回率)、F1-score(F1评分)三个指标,证实了基于GAF-ResNet方法的可行性,同时6-10号缺陷验证了该方法的可靠性和普适性。 展开更多
关键词 管道焊缝 缺陷分类 GAF 残差神经网络 导波 超声
在线阅读 下载PDF
基于改进ResNet50模型的咖啡生豆质量和缺陷检测方法 被引量:1
18
作者 纪元浩 许金普 +1 位作者 严蓓蓓 薛俊龙 《中国农机化学报》 北大核心 2024年第4期237-243,共7页
咖啡生豆的质量决定着商品咖啡豆的价格,目前对咖啡生豆的筛选主要由人工完成,费时费力。提出一种基于改进ResNet50模型来识别咖啡生豆的方法,首先收集8000张咖啡生豆图像建立数据集,并对其进行数据增强,基于ResNet50模型加入CBAM注意... 咖啡生豆的质量决定着商品咖啡豆的价格,目前对咖啡生豆的筛选主要由人工完成,费时费力。提出一种基于改进ResNet50模型来识别咖啡生豆的方法,首先收集8000张咖啡生豆图像建立数据集,并对其进行数据增强,基于ResNet50模型加入CBAM注意力机制,引入迁移学习机制,并使用深度可分离卷积来代替ResNet50残差单元中的传统卷积,构建适用于咖啡生豆分类识别的ResNet50-CBAM-DW模型。为评估模型改进的有效性,与ResNet50、AlexNet、VGG16、MobileNetV2等模型进行比较,改进后模型准确率达到91.1%,相较于原ResNet50模型准确率提升3.0%,参数量降低39.0%。 展开更多
关键词 残差网络 咖啡豆 注意力机制 卷积神经网络 深度可分离卷积
在线阅读 下载PDF
基于改进WGAN-GP和ResNet的车联网入侵检测方法 被引量:1
19
作者 魏明军 李凤 +1 位作者 刘亚志 李辉 《郑州大学学报(工学版)》 CAS 北大核心 2024年第4期30-37,共8页
为保护车联网系统免受网络攻击的威胁,同时提高车联网入侵检测的准确率,针对车辆网络数据流量大且攻击类型不平衡的特点,提出了一种新的车联网入侵检测方法(AQVAE-RGSNet)。该方法通过一种对抗量化变分自编码器以对车辆网络数据进行不... 为保护车联网系统免受网络攻击的威胁,同时提高车联网入侵检测的准确率,针对车辆网络数据流量大且攻击类型不平衡的特点,提出了一种新的车联网入侵检测方法(AQVAE-RGSNet)。该方法通过一种对抗量化变分自编码器以对车辆网络数据进行不平衡处理,该编码器通过结合矢量量化变分自编码器与带梯度惩罚的生成对抗网络进行构建,以缓解数据集中异常攻击类型样本数量极度不平衡的问题,并使用ResNet网络与改进的分段残差神经网络对输入的样本数据进行联合学习并预测其攻击类型。实验结果表明:AQVAE-RGSNet在车联网数据集CICIDS2017和CAN-intrusion-dataset上的F1得分分别达到了0.9986和0.9997;在保证最佳训练效果的前提下,能够更有效地识别车辆网络之中的攻击威胁。 展开更多
关键词 车联网 入侵检测 生成对抗网络 残差神经网络 特征融合
在线阅读 下载PDF
基于双通道Residual-LSTM的SINS/GNSS组合导航算法 被引量:1
20
作者 奔粤阳 王奕霏 +2 位作者 李倩 魏廷枭 周一帆 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第4期325-333,共9页
针对全球导航卫星系统信号中断情况下SINS/GNSS组合导航系统无法持续进行误差校正的问题,提出一种基于双通道Residual-LSTM的SINS/GNSS组合导航算法。首先,考虑到SINS经度、纬度误差传播特性不同所导致的模型输入、输出信息之间的非线... 针对全球导航卫星系统信号中断情况下SINS/GNSS组合导航系统无法持续进行误差校正的问题,提出一种基于双通道Residual-LSTM的SINS/GNSS组合导航算法。首先,考虑到SINS经度、纬度误差传播特性不同所导致的模型输入、输出信息之间的非线性相关性差异化,构建具有不同权重系数的双通道长短期记忆神经网络模型结构,并引入遗忘信息共享机制自适应地利用历史导航数据对经度、纬度信息进行拟合预测。其次,针对深层神经网络存在的模型退化和梯度消失问题,在多层双通道LSTM网络之间建立残差高速通道形成Residual-LSTM模型结构,以增加不同网络层次之间的信息传播路径。最后,通过实船数据验证本文所提算法的有效性。实验结果表明,与基于常规智能方法的SINS/GNSS组合导航算法相比,所提组合导航算法在GNSS信号中断期间经度误差降低了51.97%,纬度误差降低了31.45%。 展开更多
关键词 SINS/GNSS组合导航 GNSS中断 双通道结构 残差长短期记忆神经网络 深度神经网络
在线阅读 下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部