期刊文献+
共找到85篇文章
< 1 2 5 >
每页显示 20 50 100
融合注意力机制与改进ResNet50的服装图像属性预测方法 被引量:1
1
作者 游小荣 李淑芳 邵红燕 《现代纺织技术》 北大核心 2025年第1期58-64,共7页
为了解决人工标注服装图像属性效率低下的问题,提出了一种融合注意力机制与改进ResNet50的服装图像属性预测方法。首先对传统多标签分类方法中的模型进行了改进,改进后的方法能更充分利用任务之间的相关性,并减少数据稀缺问题带来的影响... 为了解决人工标注服装图像属性效率低下的问题,提出了一种融合注意力机制与改进ResNet50的服装图像属性预测方法。首先对传统多标签分类方法中的模型进行了改进,改进后的方法能更充分利用任务之间的相关性,并减少数据稀缺问题带来的影响;接着引入CBAM注意力机制,用于捕捉服装属性上的细节特征。结果表明:在未引入注意力机制的情况下,基于改进ResNet50的方法在多项评价指标上均优于传统多标签分类方法,准确率提高了25.96%;与ResNet34、EfficientNet_V2、VGG16模型相比,ResNet50模型在服装图像属性预测方面整体表现更佳;引入CBAM注意力机制后,基于改进ResNet50的方法的准确率再提高了1.72%。所提的融合注意力机制与改进ResNet50的服装图像属性预测方法,能够有效预测服装图像属性,为实现服装图像属性的自动化标注提供了新的思路。 展开更多
关键词 服装图像 属性预测 注意力机制 resnet50 深度学习
在线阅读 下载PDF
基于改进ResNet50的草原蝗虫种类智能识别APP系统 被引量:1
2
作者 甄又陈 王佳宇 +3 位作者 王宁 刘升平 林克剑 李艳艳 《中国农机化学报》 北大核心 2025年第5期68-78,共11页
为解决草原蝗虫在防控调查中识别困难、时效低下、准确率低等问题,提出基于改进ResNet50的蝗虫种类智能识别APP系统。以移动端设备在不同环境下拍摄的4454张不同种类的蝗虫图片为基础,采用Adam优化器与余弦退火的学习率退火方式于GoogLe... 为解决草原蝗虫在防控调查中识别困难、时效低下、准确率低等问题,提出基于改进ResNet50的蝗虫种类智能识别APP系统。以移动端设备在不同环境下拍摄的4454张不同种类的蝗虫图片为基础,采用Adam优化器与余弦退火的学习率退火方式于GoogLeNet、ALexNet、VGGNet16、ResNet34、ResNet50、MobilenetV3六种分类模型训练成果对比下,挑选最优网络。加入注意力机制,提升模型准确率,又以改进后的网络为识别模型对其进行后续的端口接入与前端的平面设计,最终形成蝗虫识别APP。试验表明:改进后的模型平均准确率提升至98.9%;测试集中的准确率为96.6%,比改进前提高7%。该蝗虫识别APP系统可安装至移动端设备,以确保蝗虫调查时准确把握蝗虫发生的详细信息。 展开更多
关键词 草原蝗虫 监测 深度学习 注意力机制 改进resnet50
在线阅读 下载PDF
基于SWT和ResNet50-TL-S模型的小样本齿轮箱故障诊断模型 被引量:1
3
作者 许家瑞 陈焰 《机电工程》 北大核心 2025年第8期1458-1468,共11页
在传统齿轮箱故障诊断过程中,因故障样本稀缺会导致模型的故障诊断精度降低。针对这一问题,提出了一种基于同步压缩小波变换(SWT)和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法(模型)。首先,使用小波阈值去噪算法对采集到的齿轮箱振... 在传统齿轮箱故障诊断过程中,因故障样本稀缺会导致模型的故障诊断精度降低。针对这一问题,提出了一种基于同步压缩小波变换(SWT)和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法(模型)。首先,使用小波阈值去噪算法对采集到的齿轮箱振动信号进行了阈值化去噪处理,消除了背景噪声;然后,使用同步压缩小波变换算法,对去噪后的振动信号进行了时频分析和时频变换,将一维去噪信号转变为二维时频图,用于构建故障诊断模型的训练样本;接着,对预训练ResNet50模型进行了微调,实现了迁移学习(TL)目的,并对迁移学习模型进行了轻量化改进,同时在模型内部嵌入了多头注意力机制,用于改善模型对不同特征权重的分配;最后,使用2组齿轮副数据和2组轴承数据,对基于SWT和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法的有效性进行了验证。研究结果表明:基于SWT和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法在无负荷工况下的单齿轮副故障诊断中,模型分类精度高达99.45%,模型训练时间为644 s;在齿轮副和轴承多重故障诊断中,模型分类精度为99.59%,模型训练时间为643 s;在有负荷工况的轴承和齿轮副多重故障诊断中,模型分类精度为98.12%,模型训练时间为646 s。这表明基于SWT和ResNet50-TL-S模型的齿轮箱故障诊断方法具备较高的齿轮箱故障诊断精度和较短的模型训练时间。 展开更多
关键词 机械传动 小波阈值去噪 同步压缩小波变换 resnet50模型 轻量化改进 多头注意力机制 迁移学习模型
在线阅读 下载PDF
基于CBAM-ResNet50的昆虫识别系统的建立
4
作者 刘璇 张玉姣 +4 位作者 杨晋宇 曹铭亮 靳德容 刘颍 李欣洋 《安徽农业科学》 2025年第19期207-212,共6页
[目的]构建一个复杂环境下的昆虫图像数据集,并提出CBAM-ResNet50模型来对昆虫进行识别。[方法]使用深度残差网络ResNet50作为该研究的主干网络,并引入混合注意力机制模块CBAM,使得模型能够更为准确地提取图像中的昆虫特征;使用复杂环... [目的]构建一个复杂环境下的昆虫图像数据集,并提出CBAM-ResNet50模型来对昆虫进行识别。[方法]使用深度残差网络ResNet50作为该研究的主干网络,并引入混合注意力机制模块CBAM,使得模型能够更为准确地提取图像中的昆虫特征;使用复杂环境下的昆虫图像数据集训练识别模型,直到模型达到迭代次数后停止。[结果]与基础模型ResNet相比,CBAM-ResNet50模型在昆虫图像的识别精度和速度方面都得到了进一步提高。CBAM-ResNet50模型对50种昆虫的识别准确率达到了97.65%,相对于原始模型在准确率、精确率、召回率和F_(1)值方面都有了一定的提升,表现更出色。[结论]该研究模型在复杂场景下可以有效对昆虫进行识别。 展开更多
关键词 昆虫识别 图像 深度学习 resnet50 注意力机制
在线阅读 下载PDF
基于改进ResNet50网络的小样本轨道板裂缝识别方法
5
作者 叶玲 邹雨清 +1 位作者 冯宇轩 景文倩 《科学技术与工程》 北大核心 2025年第27期11771-11782,共12页
受到天窗时间和自然环境的影响,传统的裂缝图像检测方法容易混淆轨道板裂缝与复杂的背景噪声,轨道板裂缝图片样本数量也不能满足训练模型的要求,最终导致检测错误和遗漏。为了提高复杂环境和小样本条件下轨道板裂缝检测效率,提出了一种... 受到天窗时间和自然环境的影响,传统的裂缝图像检测方法容易混淆轨道板裂缝与复杂的背景噪声,轨道板裂缝图片样本数量也不能满足训练模型的要求,最终导致检测错误和遗漏。为了提高复杂环境和小样本条件下轨道板裂缝检测效率,提出了一种基于卷积神经网络和生成对抗网络的轨道板裂缝识别模型。首先,制作轨道板裂缝数据集,引入循环生成对抗网络增强采集的轨道板裂缝病害图像数据集。然后,通过在ResNet50网络基础上加入扩张卷积和坐标注意力机制模块,加深网络层数获取更丰富的图像特征,提升网络对关键特征的学习能力。最后,将改进ResNet50网络模型,并与现有的三种深度卷积神经网络模型进行性能比较,其准确率、精确度、召回率和F_(1)分数分别为93.51%、93.44%、93.46%、93.45%,均高于其他模型。该模型有效解决轨道板裂缝图像缺乏、图像背景复杂等问题,同时检测的结果满足实际轨道板裂缝检修作业的需求,可为轨道结构检修人员提供参考。 展开更多
关键词 轨道板裂缝 resnet50 循环生成对抗网络 空洞卷积 坐标注意力机制
在线阅读 下载PDF
基于改进ResNet50的马铃薯叶片病害识别
6
作者 张载晖 王一波 +1 位作者 龙结伟 刘海鹏 《农业与技术》 2025年第21期43-49,共7页
马铃薯作为我国最重要的农作物之一,其生长过程中的病害会直接影响其结果率。针对马铃薯叶片病害识别率不高和病症难以判断、特征提取不充分等问题。本文基于ResNet50提出了一种改进该模型的病害识别方法。在残差模块中引入Squeeze-and-... 马铃薯作为我国最重要的农作物之一,其生长过程中的病害会直接影响其结果率。针对马铃薯叶片病害识别率不高和病症难以判断、特征提取不充分等问题。本文基于ResNet50提出了一种改进该模型的病害识别方法。在残差模块中引入Squeeze-and-Excitation注意力机制,通过在网络架构中引入SE注意力模块,增强通道间的交互,使每一层都能动态调整通道权重;针对病害图像深层特征难提取的问题,采用多层小卷积核策略增强特征提取能力,并改进主干网络中Layer4的下采样块,添加平均池化层用于减少浅层特征信息丢失。SCD_ResNet50在公开数据集PlantVillage上进行实验,与ResNet50、AlexNet和VGG16等经典模型作对比。实验表明,残差结构改进后的模型参数量仅提升了3.19%,而模型准确率提升了4.93百分点,达到了98.18%,F 1分数提高了5百分点,召回率提高了5.09百分点,精确率提高了4.82百分点。该模型不仅能准确识别马铃薯叶片病害,而且具有出色的泛化能力,对农业病害智能诊断提供了有效解决方案。 展开更多
关键词 resnet50 注意力机制 深度学习 分类训练 特征提取
在线阅读 下载PDF
基于改进ResNet50的钨矿石双能X射线图像分选方法 被引量:3
7
作者 刘志锋 曾灵锋 +2 位作者 彭芳伟 魏振华 张寰宇 《现代电子技术》 北大核心 2024年第13期87-92,共6页
文中提出一种基于深度扩张可分离卷积和注意力机制的残差网络模型(DWAtt-ResNet),通过实验对比表明,该模型在钨矿石双能X射线图像数据集上准确率、F1分数、AUC值和AP值均优于ConvNeXt、DenseNet121和EfficientNet_b4等主流的图像分类模... 文中提出一种基于深度扩张可分离卷积和注意力机制的残差网络模型(DWAtt-ResNet),通过实验对比表明,该模型在钨矿石双能X射线图像数据集上准确率、F1分数、AUC值和AP值均优于ConvNeXt、DenseNet121和EfficientNet_b4等主流的图像分类模型。通过消融实验表明,该模型准确率达到87.4%,计算量为2.7GFLOPs,参数量为16.95M,相比ResNet50准确率提高3%,计算量降低1.42 GFLOPs,参数量降低6.56M,准确率提升的同时,效率大幅提升,更适合工业生产的矿石快速分拣需求。 展开更多
关键词 钨矿石 双能X射线 图像分类 resnet50 深度扩张可分离卷积 注意力机制
在线阅读 下载PDF
基于SE-MultiResNet50算法的辣椒病害种类及程度分级检测 被引量:3
8
作者 唐源 鲁茂悦 +3 位作者 李丽平 唐有万 陈阳洋 李昱瑾 《中国农机化学报》 北大核心 2024年第12期259-266,274,共9页
在实际的辣椒种植环境中,由于其复杂背景,辣椒叶片病害的识别难度较大。目前,关于受害程度分级检测和辣椒病害分级缺乏公开的数据集。以成都市农林科学院辣椒种植基地的叶片为研究对象,采用U2-Net对叶片进行分割,生成具有不同复杂背景... 在实际的辣椒种植环境中,由于其复杂背景,辣椒叶片病害的识别难度较大。目前,关于受害程度分级检测和辣椒病害分级缺乏公开的数据集。以成都市农林科学院辣椒种植基地的叶片为研究对象,采用U2-Net对叶片进行分割,生成具有不同复杂背景的合成图像,从而丰富数据集。针对常见的辣椒细菌性斑点、白粉病和病毒病3种病害以及健康叶片,提出一种SE-MultiResNet50检测模型。该模型在全由复杂背景图像组成的测试集上表现出色:辣椒病害种类的识别准确率达到91.05%,受害严重程度分级的准确率为92.08%。结果表明,该检测模型在复杂背景下具有较高的识别精度,成功实现对辣椒病害种类分类和受害严重程度分级的智能识别。同时,提供一种新的数据集扩充方法,为相关领域的研究提供新的思路和途径。 展开更多
关键词 辣椒 病虫害 分级检测 注意力机制 resnet50
在线阅读 下载PDF
基于ResNet50与卷积稀疏表达的红外与可见光图像融合算法 被引量:3
9
作者 邵大光 邵现振 +2 位作者 刘鹏 赵闯 陶青川 《计算机应用与软件》 北大核心 2024年第5期189-196,共8页
提出一种基于ResNet50神经网络与卷积稀疏表达的红外与可见光图像融合算法。通过低通滤波将红外与可见光图像分解成基础层和细节层;运用卷积稀疏表达对基础层进行处理得到新的基础层,使用ResNet50神经网络对细节层进行特征提取,对得到... 提出一种基于ResNet50神经网络与卷积稀疏表达的红外与可见光图像融合算法。通过低通滤波将红外与可见光图像分解成基础层和细节层;运用卷积稀疏表达对基础层进行处理得到新的基础层,使用ResNet50神经网络对细节层进行特征提取,对得到的特征图进行L1正则化和最大选择策略得到最大权重层,经过权重分配得到新的细节层;对新的基础层和细节层进行重建,得到融合图像。该算法针对基础层和细节层提出了新的融合策略,并且能较好地保留细节信息和结构信息。实验结果表明,该算法在主观和客观指标证明上优于对比算法。 展开更多
关键词 图像融合 resnet50 卷积稀疏表达 红外图像 可见光图像
在线阅读 下载PDF
基于CBAM-ResNet50的金刚石颗粒净度检测方法
10
作者 费文倩 赵凤霞 +1 位作者 杜全斌 王庆海 《金刚石与磨料磨具工程》 CAS 北大核心 2024年第5期588-598,共11页
针对金刚石颗粒净度传统检测方法效率低、准确率差的问题,提出了一种基于迁移学习和改进Res-Net50的金刚石颗粒净度检测算法CBAM-ResNet50。该算法通过在ResNet50主干网络的每层中增加CBAM,以提升模型特征的提取能力;且在主干网络的Lay... 针对金刚石颗粒净度传统检测方法效率低、准确率差的问题,提出了一种基于迁移学习和改进Res-Net50的金刚石颗粒净度检测算法CBAM-ResNet50。该算法通过在ResNet50主干网络的每层中增加CBAM,以提升模型特征的提取能力;且在主干网络的Layer3和Layer4中融入FPN结构,对提取的特征进行部分特征聚合,来解决采样过程中小目标特征易丢失的问题;同时引入迁移学习方法,用交叉熵损失函数优化模型的初始参数,提升模型的泛化能力。结果表明:在学习率设置为0.0001时,提出的CBAM-ResNet50模型训练准确率达到99.2%;根据混淆矩阵计算得到模型的精确度在99.20%以上,特异性在99.70以上%,F1分数在99.20%,分类召回率在98.70%以上,优于其他主流分类网络的结果,有效提高了金刚石颗粒净度检测的识别能力。 展开更多
关键词 金刚石净度 resnet50 卷积块注意力模块 特征金字塔网络 迁移学习
在线阅读 下载PDF
基于改进YOLOv5和ResNet50的女装袖型识别方法 被引量:3
11
作者 曹涵颖 妥吉英 《现代纺织技术》 北大核心 2024年第1期45-53,共9页
针对女装袖型分类繁多、特征识别困难、检测效果不理想等问题,根据不同女装袖型的关联信息,结合注意力机制改进的YOLOv5目标检测网络和ResNet50残差网络,提出了一种女装袖子造型的自动识别方法。首先,从电商平台收集服装样本图像,按照... 针对女装袖型分类繁多、特征识别困难、检测效果不理想等问题,根据不同女装袖型的关联信息,结合注意力机制改进的YOLOv5目标检测网络和ResNet50残差网络,提出了一种女装袖子造型的自动识别方法。首先,从电商平台收集服装样本图像,按照长短大类和形态小类标记对女装袖型进行归类,建立了包含3600张图像的袖型数据集;其次,结合注意力机制改进的YOLOv5目标检测网络和ResNet50残差网络,设计了女装袖型识别方法;最后,在袖型数据集上开展模型训练,并通过实验验证袖型识别的效果。结果表明:改进YOLOv5和ResNet50相结合的深度学习方法可以有效地对女装袖型进行识别,整体识别准确率约93.3%。该女装袖型识别方法准确、便捷,可以实现大量服装款式的分类快速检测,提高服装设计效率,促进人工智能技术在服装设计领域的应用,助力我国智能制造和电子商务的发展。 展开更多
关键词 女装袖型 深度学习 YOLOv5 注意力机制 resnet50
在线阅读 下载PDF
基于Resnet50的江苏近海海面风场预报订正方法研究 被引量:2
12
作者 郝雨辰 杨勤胜 +2 位作者 霍雪松 曹卫青 戴强晟 《海洋预报》 CSCD 北大核心 2024年第4期57-65,共9页
海面风场的精确预报对于海上风能开发具有非常重要的影响。利用2019—2021年ERA5再分析数据系统评估了欧洲中期天气预报中心的EC细网格10 m风场预报在江苏近海区域的预报准确性,发现EC细网格对于该区域4级风的预报准确性最高,24 h(48 h... 海面风场的精确预报对于海上风能开发具有非常重要的影响。利用2019—2021年ERA5再分析数据系统评估了欧洲中期天气预报中心的EC细网格10 m风场预报在江苏近海区域的预报准确性,发现EC细网格对于该区域4级风的预报准确性最高,24 h(48 h)风速预报的均方根误差为2.28 m/s(2.34 m/s),但是随着风级增大,风速预报的准确性大幅降低,5~11级风24 h(48 h)预报的均方根误差(RMSE)由2.39 m/s(2.58 m/s)增加到8.67 m/s(8.51 m/s)。此外,风速预报误差存在显著的空间差异性,误差随着离岸距离的增大而增大。在此基础上,基于Resnet50模型构建了江苏近海海面风场预报订正模型,并利用2022年的预报数据对其进行独立性检验。结果表明:订正模型可以显著改善EC细网格24 h(48 h)的10 m风速预报结果,订正后的RMSE为1.45 m/s(1.66 m/s),较订正前降低了45%(40%)。对于3~10级风,订正模型24 h和48 h预报的RMSE为1.13~6.67 m/s和1.21~5.68 m/s,同样明显低于订正前(2.33~7.65 m/s和2.58~9.97 m/s)。 展开更多
关键词 深度学习 海面风场 订正 resnet50
在线阅读 下载PDF
基于ResNet50模型的矢量地图零水印算法 被引量:1
13
作者 张永利 卢浩 《地理与地理信息科学》 CSCD 北大核心 2024年第6期1-5,共5页
针对传统矢量地图零水印算法存在的抗几何攻击和要素增删攻击能力不足等问题,该文提出一种基于ResNet50模型的矢量地图零水印算法,在不改变矢量地图数据的情况下保护地图版权。该算法通过采用道格拉斯—普克算法提取矢量地图的复杂特征... 针对传统矢量地图零水印算法存在的抗几何攻击和要素增删攻击能力不足等问题,该文提出一种基于ResNet50模型的矢量地图零水印算法,在不改变矢量地图数据的情况下保护地图版权。该算法通过采用道格拉斯—普克算法提取矢量地图的复杂特征信息,将坐标集合映射为适合ResNet50模型处理的序列,通过ResNet50模型自动提取矢量地图数据中的特征,以实现零水印的构建。选择西安市餐饮、村庄、乡镇村道矢量地图数据集作为实验数据进行算法验证,结果表明,该算法在抗几何攻击和要素增删攻击方面均表现出色,在无损版权保护方面具有广阔的应用前景。 展开更多
关键词 矢量地图 零水印 resnet50 版权保护 地理信息安全
在线阅读 下载PDF
基于改进ResNet50模型的大宗淡水鱼种类识别方法 被引量:30
14
作者 万鹏 赵竣威 +5 位作者 朱明 谭鹤群 邓志勇 黄毓毅 吴文锦 丁安子 《农业工程学报》 EI CAS CSCD 北大核心 2021年第12期159-168,共10页
针对传统鱼类识别方法存在特征提取复杂、算法可移植性差等不足,该研究提出了一种基于改进ResNet50模型的淡水鱼种类识别方法。研究以鳙鱼、鳊鱼、鲤鱼、鲫鱼、草鱼、白鲢6种大宗淡水鱼为对象,通过搭建淡水鱼图像采集系统获取具有单一... 针对传统鱼类识别方法存在特征提取复杂、算法可移植性差等不足,该研究提出了一种基于改进ResNet50模型的淡水鱼种类识别方法。研究以鳙鱼、鳊鱼、鲤鱼、鲫鱼、草鱼、白鲢6种大宗淡水鱼为对象,通过搭建淡水鱼图像采集系统获取具有单一背景的淡水鱼图像,同时通过互联网搜索具有干扰背景的淡水鱼图像,共同构建淡水鱼图像数据集;再对淡水鱼图像进行预处理,以增加样本多样性;构建改进ResNet50模型,增加全连接层Fc1以及Dropout,引入迁移学习机制训练模型,同时选择CELU作为激活函数提高神经网络表达能力,通过Adam优化算法更新梯度,并嵌入余弦退火方法衰减学习率。为验证改进ResNet50模型的准确率等性能,对6种淡水鱼进行种类识别,结果表明:在单次验证方法下,选用包含单一背景图像和干扰背景图像构成的淡水鱼图像数据集训练模型,识别准确率为96.94%,比经典模型提高1.22%,单张淡水鱼图像样本的平均检测时间为0.2345 s;在四折交叉验证下,选用具有单一背景的图像数据集,模型的识别准确率为100%,选用包含单一背景图像和干扰背景图像的淡水鱼图像数据集,模型的识别准确率为96.20%,说明模型具有较好的泛化性能和鲁棒性。针对混淆矩阵的可视化结果表明:改进的ResNet50模型具有通用的结构和训练方式,对不同背景下的淡水鱼进行种类识别具有较高的准确率,可为淡水鱼种类识别提供技术借鉴。 展开更多
关键词 图像识别 水产养殖 淡水鱼 种类识别 深度学习 改进resnet50模型 超参数优化 可视化
在线阅读 下载PDF
基于声音与视觉特征多级融合的鱼类行为识别模型U-FusionNet-ResNet50+SENet 被引量:12
15
作者 胥婧雯 于红 +5 位作者 张鹏 谷立帅 李海清 郑国伟 程思奇 殷雷明 《大连海洋大学学报》 CAS CSCD 北大核心 2023年第2期348-356,共9页
为解决在光线昏暗、声音与视觉噪声干扰等复杂条件下,单模态鱼类行为识别准确率和召回率低的问题,提出了基于声音和视觉特征多级融合的鱼类行为识别模型U-FusionNet-ResNet50+SENet,该方法采用ResNet50模型提取视觉模态特征,通过MFCC+Re... 为解决在光线昏暗、声音与视觉噪声干扰等复杂条件下,单模态鱼类行为识别准确率和召回率低的问题,提出了基于声音和视觉特征多级融合的鱼类行为识别模型U-FusionNet-ResNet50+SENet,该方法采用ResNet50模型提取视觉模态特征,通过MFCC+RestNet50模型提取声音模态特征,并在此基础上设计一种U型融合架构,使不同维度的鱼类视觉和声音特征充分交互,在特征提取的各阶段实现特征融合,最后引入SENet构成关注通道信息特征融合网络,并通过对比试验,采用多模态鱼类行为的合成加噪试验数据验证算法的有效性。结果表明:U-FusionNet-ResNet50+SENet对鱼类行为识别准确率达到93.71%,F1值达到93.43%,召回率达到92.56%,与效果较好的已有模型Intermediate-feature-level deep model相比,召回率、F1值和准确率分别提升了2.35%、3.45%和3.48%。研究表明,所提出的U-FusionNet-ResNet50+SENet识别方法,可有效解决单模态鱼类行为识别准确率低的问题,提升了鱼类行为识别的整体效果,可以有效识别复杂条件下鱼类的游泳、摄食等行为,为真实生产条件下的鱼类行为识别研究提供了新思路和新方法。 展开更多
关键词 行为识别 深度学习 多模态融合 U-FusionNet resnet50 SENet
在线阅读 下载PDF
模态时频图与ResNet50融合的真空接触器故障诊断方法 被引量:11
16
作者 李海英 孙越 +1 位作者 张笑 宋建成 《高电压技术》 EI CAS CSCD 北大核心 2023年第5期1831-1840,共10页
针对时频方法用于真空接触器故障诊断存在特征遗漏的局限性,提出一种利用模态时频图描述振动信号特征,并融合ResNet50的故障辨识方法。首先设置故障模拟方案,并采用下采样处理方法,丰富样本数据库。其次采用灰狼优化算法,搜寻变分模态分... 针对时频方法用于真空接触器故障诊断存在特征遗漏的局限性,提出一种利用模态时频图描述振动信号特征,并融合ResNet50的故障辨识方法。首先设置故障模拟方案,并采用下采样处理方法,丰富样本数据库。其次采用灰狼优化算法,搜寻变分模态分解(variational mode decomposition,VMD)算法的最佳参数,将复杂振动信号分解成最佳中心频率、有限带宽的固有模态分量。最后,提出一种模态时频图提取特征方法,利用小波变换将模态分量生成模态时频图,充分提取特征,并融合ResNet50辨识故障类型。以ZKTJ–400/1140型真空接触器作为实验对象,故障识别率达到99.38%。通过与其他时频图故障诊断方法对比,所提方法准确率明显提升,为精确感知一次设备状态提供了参考。 展开更多
关键词 真空接触器 振动信号 模态时频图 resnet50 故障诊断
在线阅读 下载PDF
基于ResNet50和迁移学习的红鳍东方鲀病鱼检测方法 被引量:14
17
作者 张方言 赵梦 +5 位作者 周弈志 胥婧雯 李海清 程思奇 吴俊峰 于红 《渔业现代化》 CSCD 2021年第4期51-60,共10页
针对红鳍东方鲀病鱼样本数量少、检测准确率不高等问题,提出一种基于ResNet50和迁移学习的红鳍东方鲀病鱼检测方法。首先使用ResNet50在ImageNet数据集上进行模型预训练;然后基于预训练结果构建了红鳍东方鲀病鱼检测ResNet50网络,将经... 针对红鳍东方鲀病鱼样本数量少、检测准确率不高等问题,提出一种基于ResNet50和迁移学习的红鳍东方鲀病鱼检测方法。首先使用ResNet50在ImageNet数据集上进行模型预训练;然后基于预训练结果构建了红鳍东方鲀病鱼检测ResNet50网络,将经过预训练的、包含16个残差块的模型权重迁移到构建的ResNet50网络中进行模型权重初始化以降低训练成本;为进一步提高检测的准确性,在构建的ResNet50网络模型的最后一个卷积层后面加入反卷积层用以学习目标中的细节信息;最后,用红鳍东方鲀健康鱼和病鱼图像构建了数据集,并采用翻转、旋转、随机裁剪、色度变化和添加噪声等方法进行了数据增广,以增加数据样本的多样性,进而提高检测方法的鲁棒性。在所构建的数据集上进行了试验,试验结果表明,基于ResNet50和迁移学习的红鳍东方鲀病鱼检测方法准确率可以达到99%,与ResNet18、ResNet34、ResNet101和ResNet152不同深度的残差网络相比,分别约提升了10.7%、6.6%、6.2%和5.6%,在与不加入反卷积的ResNet50残差网络相比,约提升0.4%的精度。研究表明,采用基于ResNet50和迁移学习的方法,有效地解决了红鳍东方鲀病鱼样本少和准确率不高的问题,为红鳍东方鲀病鱼检测提供了新方法。 展开更多
关键词 resnet50 迁移学习 数据增广 红鳍东方鲀 病鱼检测 渔业信息化
在线阅读 下载PDF
基于ResNet50改进模型的图像分类研究 被引量:16
18
作者 辜瑞帆 李祥 任维民 《现代电子技术》 2023年第4期107-112,共6页
针对深度学习中残差网络ResNet50存在的信息丢失、特征提取不充分、网络过拟合和训练困难等问题,文中提出一种基于改进ResNet50的图像分类算法。针对残差网络ResNet50在提取特征时存在丢失输入特征映射情况,造成信息丢失的问题,对主干... 针对深度学习中残差网络ResNet50存在的信息丢失、特征提取不充分、网络过拟合和训练困难等问题,文中提出一种基于改进ResNet50的图像分类算法。针对残差网络ResNet50在提取特征时存在丢失输入特征映射情况,造成信息丢失的问题,对主干网络中Stage4的下采样块添加平均池化层,进一步提高网络特征提取能力;针对ResNet50训练过程中存在网络过拟合以及泛化能力差的问题,使用标签平滑方法对交叉熵损失函数进行修改,有效缓解网络损失值震荡幅度;针对ResNet50计算量大、训练困难的问题,使用混合精度和余弦退火衰减方法对模型进行训练,在加快网络收敛速度的同时提高模型的分类精度。实验结果表明,与原ResNet50网络相比,文中算法在ImageNet-1k数据集上Top1和Top5的精度分别提升3.2%和1.6%,能够更好地应用于图像分类任务。 展开更多
关键词 图像分类 改进resnet50 分类训练 网络特征提取 函数修改 模型训练
在线阅读 下载PDF
基于RAdam算法优化ResNet50模型膏体图像识别方法研究 被引量:15
19
作者 杨莹 吴爱祥 +1 位作者 王先成 王国立 《中国矿业》 2023年第7期79-86,共8页
膏体图像识别是监测膏体质量的一种有效方法,据此提出了一种基于RAdam算法优化ResNet50模型膏体图像识别方法,可实现膏体状态的高精度识别。通过收集尾砂悬液在浆体、膏体、滤饼等3种状态下的图像,经过图像预处理和数据集划分,结合迁移... 膏体图像识别是监测膏体质量的一种有效方法,据此提出了一种基于RAdam算法优化ResNet50模型膏体图像识别方法,可实现膏体状态的高精度识别。通过收集尾砂悬液在浆体、膏体、滤饼等3种状态下的图像,经过图像预处理和数据集划分,结合迁移学习的方法,对卷积神经网络的AlexNet模型、VGG16模型、VGG19模型和ResNet50模型进行预训练,对比4种模型的识别准确率和损失值,确定最佳模型;采用Adam算法和RAdam算法对模型进行优化,对比两种优化器的识别结果;利用优化模型对矿山现场图像进行识别,验证模型精度。研究结果表明:4种经典卷积神经网络模型在膏体图像识别中均有较好表现,ResNet50模型性能最佳。基于RAdam算法优化ResNet50模型收敛速度更快,识别精度更高。基于RAdam算法优化ResNet50模型膏体图像识别精度可达99.24%,可实现膏体图像的高精度识别。 展开更多
关键词 卷积神经网络 图像识别 RAdam算法 resnet50模型 膏体
在线阅读 下载PDF
基于镜像填充谱与LA-ResNet50的超短波卫星信道分类识别算法 被引量:1
20
作者 吴尚 沈雷 +2 位作者 王李军 张如栩 胡鑫 《电信科学》 2023年第10期74-84,共11页
针对超短波频段中存在的5 kHz信道、25 kHz信道、宽带干扰信道、窄带干扰信道和单音干扰信道的分类识别问题,提出了一种基于镜像填充谱与局部二值模式的注意力机制残差网络(LBP attention ResNet50,LA-ResNet50)的超短波信道分类识别方... 针对超短波频段中存在的5 kHz信道、25 kHz信道、宽带干扰信道、窄带干扰信道和单音干扰信道的分类识别问题,提出了一种基于镜像填充谱与局部二值模式的注意力机制残差网络(LBP attention ResNet50,LA-ResNet50)的超短波信道分类识别方法,有效解决了低信噪比下卫星信道与底噪难以区分,信号信道与特征相近的干扰信道识别困难的问题。首先,所提方法对超短波的频谱进行镜像对称并填充,同时对频谱边缘进行描黑处理,构成镜像填充谱,提高不同类型信道频谱图的区分度;然后,在ResNet50中引入通道注意力机制,使网络模型关注度集中在信道上;最后,提出了基于交叉熵和局部二值模式(local binary pattern,LBP)的损失函数,提高对信号信道和干扰信道图像边缘细微纹理特征的提取效果。所提基于镜像填充谱和LA-ResNet50的方法,对比利用快速傅里叶变换(fast Fourier transform,FFT)频谱门限阈值分类的传统方法与基于镜像填充谱的YOLOv5s目标检测分类法,以及基于镜像填充谱的注意力机制残差网络(Attention-ResNet50)、Transformer网络方法,在10 dB信噪比下对超短波信道的分类识别率分别提高了19.8%、8.2%、1.8%、0.8%。 展开更多
关键词 超短波信道 注意力机制 分类识别 resnet50
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部