针对新型带伪缺口的滑动拼图验证码程序有效阻止了现有方法的攻击,提出改进ResNet18的滑动拼图验证码破解方法。为保证训练模型具有泛化性,通过数据增强方式获取百万级训练样本并进行图像预处理;随后将预处理图像送入改进的ResNet18进...针对新型带伪缺口的滑动拼图验证码程序有效阻止了现有方法的攻击,提出改进ResNet18的滑动拼图验证码破解方法。为保证训练模型具有泛化性,通过数据增强方式获取百万级训练样本并进行图像预处理;随后将预处理图像送入改进的ResNet18进行训练和测试获得网络模型,紧接着使用该模型进行滑块检测和缺口检测计算滑块与缺口之间的距离,并使用随机曲线拟合算法生成滑动轨迹;利用Selenium拖动滑块完成拼图验证。经实验表明改进ResNet18相较于传统的ResNet18参数量减少41%、GFLOPs(Giga Floating-point Operations Per Second)减少59%,在检测精度提高1.8百分点的情况下推理速度快了2.75倍,还能有效破解新型和普通滑动拼图验证码程序,其中mAP(Mean Average Precision)达到98.66%,mAS(Mean Average Speed)为3.68 s,具有较强的普适性且整体性能优于现有方法。展开更多
为了研究出一种快速、高效的玉米病害识别方法,针对玉米叶片病害识别问题,本文以灰斑病、南方锈病、小斑病、锈病、叶斑等5种常见的玉米叶片病害为研究对象,提出一种基于改进ResNet18神经网络的玉米病害识别方法。通过在ResNet18网络的...为了研究出一种快速、高效的玉米病害识别方法,针对玉米叶片病害识别问题,本文以灰斑病、南方锈病、小斑病、锈病、叶斑等5种常见的玉米叶片病害为研究对象,提出一种基于改进ResNet18神经网络的玉米病害识别方法。通过在ResNet18网络的基础上引入金字塔卷积(Pyramidal Convolution)可以在玉米复杂的生长环境中利用多尺度的特征信息来提高模型对单叶片的识别和定位能力,以有效加快模型的收敛速度并显著提高模型的病害识别准确率;将残差结构的激活函数替换为PReLU(Parametric Rectified Linear Unit)激活函数避免模型训练过程中的神经元死亡。在收集的真实玉米叶片病害数据集上进行的实验表明,与原始ResNet18残差网络相比,本文提出的模型在玉米叶片病害识别的准确率、精确度、召回率、F1分数分别提升了1.86%、1.78%、1.78%、1.87%;模型的参数尺寸减小了1.85%。该模型可作为一种检测复杂生长环境下玉米叶片病害的有效方法。展开更多
针对图像描述算法缺乏在农业领域中的应用,传统模型参数庞大的问题,该研究提出一种基于ResNet18特征编码器的图像描述算法,对作物患病类型进行识别并生成描述。首先,建立水稻病虫害图像描述数据集。其次,使用浅层ResNet18作为编码器,在...针对图像描述算法缺乏在农业领域中的应用,传统模型参数庞大的问题,该研究提出一种基于ResNet18特征编码器的图像描述算法,对作物患病类型进行识别并生成描述。首先,建立水稻病虫害图像描述数据集。其次,使用浅层ResNet18作为编码器,在保证特征提取能力的同时缩减网络模型大小,解码器使用融合了注意力机制的长短期记忆网络(Long Short Term Memory,LSTM)来生成图像描述。试验结果表明,改进后模型尺寸大小为原来的1/3,经过6000次迭代后模型基本收敛,准确率达到98.48%。在水稻病虫害图像描述数据集上,改进编码器-解码器结构后的双语评估替换值(Bilingual Evaluation Understudy,BLEU)和METEOR(Metric for Evaluation of Translation with Explicit ORdering)分别达到0.752和0.404,其余指标结果也明显优于其他模型,具有描述细致准确、鲁棒性强等优点,能够更好地适用于小规模数据集上的训练,可为农作物相似病害特征的自动化描述提供有益参考。展开更多
文摘针对新型带伪缺口的滑动拼图验证码程序有效阻止了现有方法的攻击,提出改进ResNet18的滑动拼图验证码破解方法。为保证训练模型具有泛化性,通过数据增强方式获取百万级训练样本并进行图像预处理;随后将预处理图像送入改进的ResNet18进行训练和测试获得网络模型,紧接着使用该模型进行滑块检测和缺口检测计算滑块与缺口之间的距离,并使用随机曲线拟合算法生成滑动轨迹;利用Selenium拖动滑块完成拼图验证。经实验表明改进ResNet18相较于传统的ResNet18参数量减少41%、GFLOPs(Giga Floating-point Operations Per Second)减少59%,在检测精度提高1.8百分点的情况下推理速度快了2.75倍,还能有效破解新型和普通滑动拼图验证码程序,其中mAP(Mean Average Precision)达到98.66%,mAS(Mean Average Speed)为3.68 s,具有较强的普适性且整体性能优于现有方法。
文摘为了研究出一种快速、高效的玉米病害识别方法,针对玉米叶片病害识别问题,本文以灰斑病、南方锈病、小斑病、锈病、叶斑等5种常见的玉米叶片病害为研究对象,提出一种基于改进ResNet18神经网络的玉米病害识别方法。通过在ResNet18网络的基础上引入金字塔卷积(Pyramidal Convolution)可以在玉米复杂的生长环境中利用多尺度的特征信息来提高模型对单叶片的识别和定位能力,以有效加快模型的收敛速度并显著提高模型的病害识别准确率;将残差结构的激活函数替换为PReLU(Parametric Rectified Linear Unit)激活函数避免模型训练过程中的神经元死亡。在收集的真实玉米叶片病害数据集上进行的实验表明,与原始ResNet18残差网络相比,本文提出的模型在玉米叶片病害识别的准确率、精确度、召回率、F1分数分别提升了1.86%、1.78%、1.78%、1.87%;模型的参数尺寸减小了1.85%。该模型可作为一种检测复杂生长环境下玉米叶片病害的有效方法。
文摘针对图像描述算法缺乏在农业领域中的应用,传统模型参数庞大的问题,该研究提出一种基于ResNet18特征编码器的图像描述算法,对作物患病类型进行识别并生成描述。首先,建立水稻病虫害图像描述数据集。其次,使用浅层ResNet18作为编码器,在保证特征提取能力的同时缩减网络模型大小,解码器使用融合了注意力机制的长短期记忆网络(Long Short Term Memory,LSTM)来生成图像描述。试验结果表明,改进后模型尺寸大小为原来的1/3,经过6000次迭代后模型基本收敛,准确率达到98.48%。在水稻病虫害图像描述数据集上,改进编码器-解码器结构后的双语评估替换值(Bilingual Evaluation Understudy,BLEU)和METEOR(Metric for Evaluation of Translation with Explicit ORdering)分别达到0.752和0.404,其余指标结果也明显优于其他模型,具有描述细致准确、鲁棒性强等优点,能够更好地适用于小规模数据集上的训练,可为农作物相似病害特征的自动化描述提供有益参考。