期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于YOLO2和ResNet算法的监控视频中的人脸检测与识别 被引量:26
1
作者 朱超平 杨艺 《重庆理工大学学报(自然科学)》 CAS 北大核心 2018年第8期170-175,共6页
针对监控环境下的人脸识别比较问题,提出一套基于深度学习的检测识别方法,利用YOLO2算法和Res Net算法完成监控视频中的人脸监测和识别。检测部分采用速度较快的YOLO2算法,识别部分采用准确率较高的Res Net算法。利用WIDER FACE人脸检... 针对监控环境下的人脸识别比较问题,提出一套基于深度学习的检测识别方法,利用YOLO2算法和Res Net算法完成监控视频中的人脸监测和识别。检测部分采用速度较快的YOLO2算法,识别部分采用准确率较高的Res Net算法。利用WIDER FACE人脸检测数据库和CASIA_Webface数据库做验证性实验,实验结果表明:系统整体的实时性和准确率均可满足实际工程应用需要。 展开更多
关键词 深度学习 快速检测 人脸识别 YOLO2算法 resnet算法
在线阅读 下载PDF
基于YOLO-v5和ResNet的舱底水液位识别算法 被引量:4
2
作者 王坤 房玉吉 +2 位作者 刘华龙 刘帅 余淞洋 《船海工程》 北大核心 2020年第6期39-43,共5页
针对船舶破损浸水后无法快速识别的问题,提出一种基于YOLO-v5和ResNet算法的舱底水液位识别算法,测试结果显示,该方法的准确率和响应速度基本达到实际使用需求,随着训练样本数量增加,该舱底水液位识别算法的精度将继续提高,并具备在船... 针对船舶破损浸水后无法快速识别的问题,提出一种基于YOLO-v5和ResNet算法的舱底水液位识别算法,测试结果显示,该方法的准确率和响应速度基本达到实际使用需求,随着训练样本数量增加,该舱底水液位识别算法的精度将继续提高,并具备在船舶损害管制系统中应用的可能。 展开更多
关键词 YOLO-v5算法 resnet算法 图像识别 液位识别
在线阅读 下载PDF
基于改进ResNet玉米种子分类方法研究 被引量:19
3
作者 吕梦棋 张芮祥 +1 位作者 贾浩 马丽 《中国农机化学报》 北大核心 2021年第4期92-98,共7页
针对传统人工挑选存在误差大、效率低等问题,提出一种基于ResNet网络的细粒度图像分类方法对玉米种子进行精确分类。首先,针对玉米种子特征建立图像采集平台并对采集到的图片进行图像预处理,然后,构建基于ResNet的玉米种子的分类模型并... 针对传统人工挑选存在误差大、效率低等问题,提出一种基于ResNet网络的细粒度图像分类方法对玉米种子进行精确分类。首先,针对玉米种子特征建立图像采集平台并对采集到的图片进行图像预处理,然后,构建基于ResNet的玉米种子的分类模型并优化整个网络,输入玉米种子图像输入到模型中进行训练,直到得到权值最好的分类模型,相同条件下还比较VGG-13、AlexNet以及ResNet-50的结果。试验表明:本文提出的卷积神经网络的识别精度和识别时间与VGG-13、AlexNet以及ResNet-50相比都得到一定的提升。经过改进ResNet算法对大、中、小种子的识别率分别为96.4%、93.5%、92.3%高于VGG-13、AlexNet以及ResNet-50三种算法。 展开更多
关键词 玉米种子分类 机器视觉 特征提取 resnet算法
在线阅读 下载PDF
基于深度学习的人工智能设计决策模型 被引量:34
4
作者 王亚辉 余隋怀 +4 位作者 陈登凯 初建杰 刘卓 王金磊 马宁 《计算机集成制造系统》 EI CSCD 北大核心 2019年第10期2467-2475,共9页
为了消除设计决策者决策偏好对产品开发的影响,进一步提升设计决策效率,提出了ResNet人工智能设计决策模型。该模型基于人工智能思想,构建了基于产品造型语义的设计历史方案数据集,并对该数据集进行了产品造型语义标注。通过深度残差学... 为了消除设计决策者决策偏好对产品开发的影响,进一步提升设计决策效率,提出了ResNet人工智能设计决策模型。该模型基于人工智能思想,构建了基于产品造型语义的设计历史方案数据集,并对该数据集进行了产品造型语义标注。通过深度残差学习网络算法(ResNet)对数据集进行不断训练来提高设计决策的准确度,将一般设计决策问题转化为设计方案图像的语义识别问题,最大限度地消除了决策者决策偏好的影响。通过起重机造型设计决策实例,验证了ResNet人工智能设计决策算法的有效性和可行性。 展开更多
关键词 深度学习 人工智能 设计决策 设计语义 resnet算法 产品开发
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部