期刊文献+
共找到521篇文章
< 1 2 27 >
每页显示 20 50 100
融合注意力机制与改进ResNet50的服装图像属性预测方法 被引量:1
1
作者 游小荣 李淑芳 邵红燕 《现代纺织技术》 北大核心 2025年第1期58-64,共7页
为了解决人工标注服装图像属性效率低下的问题,提出了一种融合注意力机制与改进ResNet50的服装图像属性预测方法。首先对传统多标签分类方法中的模型进行了改进,改进后的方法能更充分利用任务之间的相关性,并减少数据稀缺问题带来的影响... 为了解决人工标注服装图像属性效率低下的问题,提出了一种融合注意力机制与改进ResNet50的服装图像属性预测方法。首先对传统多标签分类方法中的模型进行了改进,改进后的方法能更充分利用任务之间的相关性,并减少数据稀缺问题带来的影响;接着引入CBAM注意力机制,用于捕捉服装属性上的细节特征。结果表明:在未引入注意力机制的情况下,基于改进ResNet50的方法在多项评价指标上均优于传统多标签分类方法,准确率提高了25.96%;与ResNet34、EfficientNet_V2、VGG16模型相比,ResNet50模型在服装图像属性预测方面整体表现更佳;引入CBAM注意力机制后,基于改进ResNet50的方法的准确率再提高了1.72%。所提的融合注意力机制与改进ResNet50的服装图像属性预测方法,能够有效预测服装图像属性,为实现服装图像属性的自动化标注提供了新的思路。 展开更多
关键词 服装图像 属性预测 注意力机制 resnet50 深度学习
在线阅读 下载PDF
基于ResNet18改进模型的玉米叶片病害识别
2
作者 张明杰 朱节中 +3 位作者 杨再强 姚成敏 邢跃 薛中航 《江苏农业科学》 北大核心 2025年第10期214-221,共8页
为了对玉米叶片病害进行及时准确的识别,预防玉米叶片病害,保障玉米产量,针对玉米叶片病斑微小、不规则以及多种叶片病害相似度较高不易识别、传统神经网络模型参数大和训练时间长的问题,提出一种基于改进ResNet18的玉米叶片病害识别模... 为了对玉米叶片病害进行及时准确的识别,预防玉米叶片病害,保障玉米产量,针对玉米叶片病斑微小、不规则以及多种叶片病害相似度较高不易识别、传统神经网络模型参数大和训练时间长的问题,提出一种基于改进ResNet18的玉米叶片病害识别模型。研究对象为健康叶片和3种常见病害叶片,包括大斑病、灰斑病、锈病叶片。以ResNet18为基础模型,引入高阶残差结构替代传统残差块,以增强对玉米叶片上微小病斑的提取能力,同时引入注意力模块,使网络能够更聚焦于病斑区域,提升特征学习的针对性,在网络深层引入非对称卷积,进一步优化细微病斑特征的提取效果,并对比不同注意力机制、不同学习率对模型准确率的影响。结果表明,改进ResNet18(AC-SK-ResNet)模型的准确率可达98.7%,较原模型提高了3.1百分点,参数量为10.25 M,以远小于原模型的参数量取得了更好的特征提取效果,实现了精度和效率的双重优化。该模型体积小,识别精度优于其他几个模型,可为玉米叶片常见病害的识别提供一定参考。 展开更多
关键词 玉米病害 图像识别 卷积 注意力机制 resnet 18模型 AC-SK-resnet模型
在线阅读 下载PDF
基于改进SE-ResNet50的激光雷达晴空湍流识别研究
3
作者 庄子波 陈珺 +3 位作者 何沛林 张红颖 靳国华 罗雄 《雷达学报(中英文)》 北大核心 2025年第3期629-640,共12页
针对机场低空区域采用激光雷达进行湍流识别时识别率低的问题,提出了使用一种改进50层挤压激励残差网络(SE-ResNet50)的晴空湍流识别方法。通过引入挤压激励模块,改进网络结构,降低了模型对特征定位的过度敏感,使网络在学习过程中选择... 针对机场低空区域采用激光雷达进行湍流识别时识别率低的问题,提出了使用一种改进50层挤压激励残差网络(SE-ResNet50)的晴空湍流识别方法。通过引入挤压激励模块,改进网络结构,降低了模型对特征定位的过度敏感,使网络在学习过程中选择性地突出有用的信息特征;以兰州中川国际机场的实测数据建立了样本数据集,依据湍流分类等级抽取弱、中、强3类等量颠簸数据建立平衡数据集进行模型训练。在相同的实验条件下,与卷积神经网络、MobileNetV2和ShuffleNetV1网络相比,改进SE-ResNet50的识别准确率分别提高了7.44%,6.52%和4.11%,对比各个模型生成的混淆矩阵,表明该文方法的准确率达到了95%,验证了所提方法的可行性。 展开更多
关键词 激光雷达 涡流耗散率(EDR) 晴空湍流 残差网络(resnet) 深度学习
在线阅读 下载PDF
基于DSG-ResNet34的聚乙烯燃气管道电熔焊接缺陷检测
4
作者 凌晓 刘露 +2 位作者 孙宝财 张正棠 徐晓刚 《仪器仪表学报》 北大核心 2025年第6期228-240,共13页
PE燃气管道的连接质量能直接影响中低压燃气的正常输送,在电熔焊接时产生的结构畸变、冷焊等缺陷会显著削弱管道的力学性能,威胁燃气管网的稳定运行。因此,基于实地采集的PE燃气管道电熔焊接缺陷DR图像数据集,提出了基于DSG-ResNet34模... PE燃气管道的连接质量能直接影响中低压燃气的正常输送,在电熔焊接时产生的结构畸变、冷焊等缺陷会显著削弱管道的力学性能,威胁燃气管网的稳定运行。因此,基于实地采集的PE燃气管道电熔焊接缺陷DR图像数据集,提出了基于DSG-ResNet34模型的缺陷检测方法,以实现对电熔焊接缺陷进行快速精准地检测。该网络模型由主干网络CBAM-ResNet34模块、动态稀疏门控金字塔DSG-FPN、多尺度检测头3个部分组成,首先通过主干网络CBAM-ResNet34结构从通道和空间两个维度提升网络模型对缺陷特征的关注度,然后通过动态稀疏门控金字塔DSG-FPN结构的动态稀疏门控模块、Inception模块、稀疏连接动态融合多尺度缺陷特征,有效保留小目标特征、抑制背景噪声,最后通过多尺度检测头结构将提取到的丰富特征转化为具体的检测结果。DSG-ResNet34模型的缺陷检测准确率最高可达95.5%、P2层精确率最高可达82.7%、小目标召回率最低为85.6%、检测速度可达68 fps、参数量为22.3×10^(6),该模型能快速定位识别孔洞、熔融面夹杂、结构畸变、冷焊这4类典型电熔焊接缺陷,检测性能与速度优于其他网络模型。为PE管道焊接质量智能化检测提供了高精度解决方案,对保障燃气管网安全运行具有重要意义。 展开更多
关键词 聚乙烯燃气管道 缺陷检测 电熔焊接 resnet34模型 特征金字塔
在线阅读 下载PDF
基于ResNet-UNet模型的DAS矸石浆体充填堵管监测技术
5
作者 柴敬 王梓名 +7 位作者 马晨阳 张丁丁 李至 周森 秋丰岐 吴玉意 冀汶莉 赵鹏翔 《西安科技大学学报》 北大核心 2025年第4期650-662,共13页
煤矸石浆体输送管道在输送过程中易产生堵塞、腐蚀等多种问题。目前针对浆体管道输送中存在的堵塞问题,精准定位仍面临着巨大挑战。基于此,提出了一种以分布式声波传感技术(DAS)为监测手段,结合图像降噪与ResNet-UNet复合网络对堵塞点... 煤矸石浆体输送管道在输送过程中易产生堵塞、腐蚀等多种问题。目前针对浆体管道输送中存在的堵塞问题,精准定位仍面临着巨大挑战。基于此,提出了一种以分布式声波传感技术(DAS)为监测手段,结合图像降噪与ResNet-UNet复合网络对堵塞点位进行监测和识别的方法;为评估所提出的技术方案,建立了15.14 m的环管模型,并进行注浆堵塞模拟试验。结果表明:相比于传统的UNet及ResNet网络,ResNet-UNet网络模型可在有效避免梯度爆炸问题的基础上,较为精准地对堵塞点位图像进行识别,堵塞点定位的准确率为97.83%,精确率为97.76%,召回率为94.80%,F1分数为0.958 9。该研究在全覆盖式监测矸石输送管道的基础上,有效解决了DAS传感监测时,由于其高灵敏度所带来的噪声处理难题,较为精确地实现了堵塞点的定位效果,研究为矸石浆体输送管道监测及堵塞点的定位问题提供了智能化的解决方案。 展开更多
关键词 分布式声波传感技术 矸石浆体管道输送 降噪算法 resnet-UNet模型 图像识别 堵塞定位
在线阅读 下载PDF
基于ResNet的智能烟叶分级系统 被引量:1
6
作者 胡建欣 卢敏瑞 +5 位作者 钟永健 王辉 俞贝楠 曹思源 刘英 沈会良 《传感技术学报》 北大核心 2025年第1期96-103,共8页
在卷烟生产中,为确保品质稳定,需要对烤烟分级。不同等级烟叶外观差异小,分级难度大。为充分利用烟叶有效信息,提高自动化分级准确率,设计了基于ResNet18的多源图像智能烟叶分级系统。该系统同时采集反射及透射图像,反射图像可提供颜色... 在卷烟生产中,为确保品质稳定,需要对烤烟分级。不同等级烟叶外观差异小,分级难度大。为充分利用烟叶有效信息,提高自动化分级准确率,设计了基于ResNet18的多源图像智能烟叶分级系统。该系统同时采集反射及透射图像,反射图像可提供颜色及纹理信息,透射图像可提供厚度及脉络形状信息。采用Phase Correlation配准和拉普拉斯金字塔融合局部图像,得到烟叶的完整透射图像,采用IC-LK配准反射及透射图像,提升模型特征提取能力。以ResNet18为基础,设计了多源图像特征融合分级模型,通过引入透射图像,分级准确率可从88.0%提升至90.22%,表明了所设计系统及烟叶分级方法的有效性。 展开更多
关键词 烟叶分级 多源图像 多模态特征提取 系统设计 resnet
在线阅读 下载PDF
基于改进ResNet50的草原蝗虫种类智能识别APP系统 被引量:1
7
作者 甄又陈 王佳宇 +3 位作者 王宁 刘升平 林克剑 李艳艳 《中国农机化学报》 北大核心 2025年第5期68-78,共11页
为解决草原蝗虫在防控调查中识别困难、时效低下、准确率低等问题,提出基于改进ResNet50的蝗虫种类智能识别APP系统。以移动端设备在不同环境下拍摄的4454张不同种类的蝗虫图片为基础,采用Adam优化器与余弦退火的学习率退火方式于GoogLe... 为解决草原蝗虫在防控调查中识别困难、时效低下、准确率低等问题,提出基于改进ResNet50的蝗虫种类智能识别APP系统。以移动端设备在不同环境下拍摄的4454张不同种类的蝗虫图片为基础,采用Adam优化器与余弦退火的学习率退火方式于GoogLeNet、ALexNet、VGGNet16、ResNet34、ResNet50、MobilenetV3六种分类模型训练成果对比下,挑选最优网络。加入注意力机制,提升模型准确率,又以改进后的网络为识别模型对其进行后续的端口接入与前端的平面设计,最终形成蝗虫识别APP。试验表明:改进后的模型平均准确率提升至98.9%;测试集中的准确率为96.6%,比改进前提高7%。该蝗虫识别APP系统可安装至移动端设备,以确保蝗虫调查时准确把握蝗虫发生的详细信息。 展开更多
关键词 草原蝗虫 监测 深度学习 注意力机制 改进resnet50
在线阅读 下载PDF
基于改进ResNet深度学习的古代壁画分类方法 被引量:1
8
作者 曹建芳 彭存赫 +1 位作者 陈志强 杨卓林 《电子测量技术》 北大核心 2025年第1期186-196,共11页
针对壁画图像人物间纹理,轮廓相似,不同场景下壁画人物特征差异较大,背景噪声复杂,分类易混淆等问题,提出了一种针对ResNet卷积神经网络的改进策略。首先将模型输入层中较大的7×7卷积核分离为3个串联的3×3小卷积核堆积的主干,... 针对壁画图像人物间纹理,轮廓相似,不同场景下壁画人物特征差异较大,背景噪声复杂,分类易混淆等问题,提出了一种针对ResNet卷积神经网络的改进策略。首先将模型输入层中较大的7×7卷积核分离为3个串联的3×3小卷积核堆积的主干,将2×2平均池化与最大池化进行add特征融合取代原最大池化操作,增强模型的表征能力。其次设计了一种多尺度高效的空间通道注意模块,以ECA通道注意力模块为基础,串联空间注意力模块,将空间模块中原3×3卷积核替换为SK注意力模块,融合多尺度信息捕捉全局长距离依赖关系,降低背景噪声的干扰。最后提出一种蜂窝式聚合结构,将相邻的block块中的输出信息进行add操作,作为后续层的输入,同时捕获低级和高级特征,增强上下文信息的流通性。实验结果表明:该模型在准确率、精度、召回率和F1值分别达到96.51%、96.65%、96.67%、96.63%。相对于原模型ResNet-18准确率提升9.76%,与主流的分类算法相比分类准确率、泛化能力、稳定性均有一定的提升,能够高效准确识别壁画所属类型,这对于文化遗产保护和艺术史方面研究具有显著价值。 展开更多
关键词 壁画分类 resnet 注意力机制 特征提取 卷积神经网络 深度学习
在线阅读 下载PDF
基于暗通道先验知识和ResNet网络的焦炭智能装载溢出检测方法 被引量:1
9
作者 解康战 侯惠芳 +1 位作者 张自豪 孙文涛 《科学技术与工程》 北大核心 2025年第8期3325-3332,共8页
高粉尘环境下进行精准的焦炭溢出检测是实现焦炭智能装载的重要挑战。针对此问题,提出一种基于暗通道先验知识和ResNet网络的焦炭智能装载溢出检测方法。首先,利用视频采集器获取焦炭装载场景视频信息,并对原始时间序列视频图像帧进行... 高粉尘环境下进行精准的焦炭溢出检测是实现焦炭智能装载的重要挑战。针对此问题,提出一种基于暗通道先验知识和ResNet网络的焦炭智能装载溢出检测方法。首先,利用视频采集器获取焦炭装载场景视频信息,并对原始时间序列视频图像帧进行处理以获得下料口及装载器之间感兴趣区域;其次,提出利用暗通道先验知识方法对感兴趣区域进行处理,提升感兴趣区域中目标区域与无关区域之间对比度,以降低粉尘对后续检测模型的影响。再者,根据焦炭实际装载情况对感兴趣区域进行标注将溢出检测问题转化成二分类。最终,提出利用ResNet网络建模完成对模型的训练获得训练模型并在新采集焦炭装载过程中进行实验。实验证明所提方法在新的数据上测试结果表现优异,整体准确率达到86.81%,其中溢出类的精确度、召回率和F1分数分别为84.12%、90.74%和0.8730。并且在使用了暗通道先验算法处理数据后,溢出类的召回率上升了3.31%。 展开更多
关键词 焦炭智能装载溢出检测 暗通道先验知识 resnet网络
在线阅读 下载PDF
基于改进ResNet18的玉米种子细粒度图像分类方法 被引量:1
10
作者 李鸿强 张超 +2 位作者 张栋 张诗欣 李民赞 《农业工程学报》 北大核心 2025年第15期155-164,共10页
针对玉米种子细粒率图像分类准确度低的问题,该研究对ResNet18模型进行改进优化,以提高玉米种子细粒度图像分类精度。首先,引入路径增强网络(path aggregation network,PANet),以提高模型对玉米细粒度图像特征融合能力;其次,构建强化-... 针对玉米种子细粒率图像分类准确度低的问题,该研究对ResNet18模型进行改进优化,以提高玉米种子细粒度图像分类精度。首先,引入路径增强网络(path aggregation network,PANet),以提高模型对玉米细粒度图像特征融合能力;其次,构建强化-互补学习网络(reinforcement&complementary network,RCNet),提升局部和边缘特征的提取能力;最后,引入协同注意力特征融合结构(collaborative attention feature fusion,CAFF),将RCNet提取的特征进行自适应加权融合,提升模型对整体特征的关注度。试验结果表明:改进后的ResNet18模型的准确率、召回率、精确率、加权分数(F1-score)分别为98.78%、96.62%、99.17%、97.88%,分别比原始模型高出4.28、4.11、4.29和4.20个百分点,推理速度为104帧/s,模型大小为105.2 MB。并将模型部署到移动端,改进的ResNet18模型基于移动端能够适应复杂背景下的玉米种子识别,识别准确率均超过95%,平均推理速度最低为257 ms,满足实时预测要求,在准确率和模型稳定性上表现优异。研究成果可为种子细粒度图像分类问题提供技术参考。 展开更多
关键词 深度学习 加强学习 互补学习 resnet18 玉米种子
在线阅读 下载PDF
基于SWT和ResNet50-TL-S模型的小样本齿轮箱故障诊断模型 被引量:1
11
作者 许家瑞 陈焰 《机电工程》 北大核心 2025年第8期1458-1468,共11页
在传统齿轮箱故障诊断过程中,因故障样本稀缺会导致模型的故障诊断精度降低。针对这一问题,提出了一种基于同步压缩小波变换(SWT)和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法(模型)。首先,使用小波阈值去噪算法对采集到的齿轮箱振... 在传统齿轮箱故障诊断过程中,因故障样本稀缺会导致模型的故障诊断精度降低。针对这一问题,提出了一种基于同步压缩小波变换(SWT)和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法(模型)。首先,使用小波阈值去噪算法对采集到的齿轮箱振动信号进行了阈值化去噪处理,消除了背景噪声;然后,使用同步压缩小波变换算法,对去噪后的振动信号进行了时频分析和时频变换,将一维去噪信号转变为二维时频图,用于构建故障诊断模型的训练样本;接着,对预训练ResNet50模型进行了微调,实现了迁移学习(TL)目的,并对迁移学习模型进行了轻量化改进,同时在模型内部嵌入了多头注意力机制,用于改善模型对不同特征权重的分配;最后,使用2组齿轮副数据和2组轴承数据,对基于SWT和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法的有效性进行了验证。研究结果表明:基于SWT和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法在无负荷工况下的单齿轮副故障诊断中,模型分类精度高达99.45%,模型训练时间为644 s;在齿轮副和轴承多重故障诊断中,模型分类精度为99.59%,模型训练时间为643 s;在有负荷工况的轴承和齿轮副多重故障诊断中,模型分类精度为98.12%,模型训练时间为646 s。这表明基于SWT和ResNet50-TL-S模型的齿轮箱故障诊断方法具备较高的齿轮箱故障诊断精度和较短的模型训练时间。 展开更多
关键词 机械传动 小波阈值去噪 同步压缩小波变换 resnet50模型 轻量化改进 多头注意力机制 迁移学习模型
在线阅读 下载PDF
融合注意力机制的ResNet熔覆层稀释率识别方法
12
作者 张筱睿 李涛 +1 位作者 石博文 詹欢 《机械设计与制造》 北大核心 2025年第11期1-4,共4页
金属激光熔覆层质量和激光熔池状态联系密切,根据激光熔覆过程中熔池视觉特征对熔池状态进行在线监测,进而实现熔覆层稀释率大小在线识别对金属激光熔覆过程在线监测具有重要意义。为了实现激光熔覆层稀释率大小的在线监测,提出了一种... 金属激光熔覆层质量和激光熔池状态联系密切,根据激光熔覆过程中熔池视觉特征对熔池状态进行在线监测,进而实现熔覆层稀释率大小在线识别对金属激光熔覆过程在线监测具有重要意义。为了实现激光熔覆层稀释率大小的在线监测,提出了一种融合注意力机制的ResNet熔覆层稀释率识别模型。首先根据试验结果探究了激光熔覆工艺参数对稀释率的影响,其次根据同轴相机采集到的熔池图像,建立模型的训练集和测试集,并构建了融合注意力机制的ResNet激光熔覆层稀释率识别模型,并对比研究了注意力机制对熔覆层识别准确率的影响。结果表明:注意力机制显著提高了模型识别准确率,使准确率从92.97%提高到了94.02%。 展开更多
关键词 激光熔覆 稀释率 混合注意力机制 resnet 图像识别 熔池
在线阅读 下载PDF
基于ResNet-18的三维成矿预测方法研究
13
作者 陈宇恒 李晓晖 +3 位作者 袁峰 薛晨 谢先岗 郑超杰 《合肥工业大学学报(自然科学版)》 北大核心 2025年第10期1357-1363,共7页
目前深部隐伏矿床成为中国东部地区主要找矿目标,利用基于卷积神经网络(convolutional neural network,CNN)的三维成矿预测方法能够更好地圈定找矿靶区,指导进一步勘探。文章以安徽省宣城市茶亭地区为研究实例,开展基于ResNet-18残差网... 目前深部隐伏矿床成为中国东部地区主要找矿目标,利用基于卷积神经网络(convolutional neural network,CNN)的三维成矿预测方法能够更好地圈定找矿靶区,指导进一步勘探。文章以安徽省宣城市茶亭地区为研究实例,开展基于ResNet-18残差网络(residual network,ResNet)的三维成矿预测方法研究。结果表明:基于ResNet-18的深层预测模型的训练准确率为99.62%;相较于逻辑回归模型和基于LeNet-5的预测模型,基于ResNet-18的三维预测模型能够在更小的成矿远景区范围内预测出更多的矿化单元,具备更优异的预测能力,可为三维成矿预测研究提供更强大的数据综合工具。 展开更多
关键词 三维卷积神经网络(3DCNN) 残差网络(resnet) 三维成矿预测 茶亭地区
在线阅读 下载PDF
VMD-小波去噪与双线性ResNet结合坐标注意力机制的水声信号调制识别方法 被引量:1
14
作者 周锋 韦少帅 乔钢 《哈尔滨工程大学学报》 北大核心 2025年第7期1357-1366,共10页
针对复杂的水声环境噪声干扰导致提取信号特征不明显、水声通信调制信号类内差异大、类间相似导致调制识别准确率低的问题,本文提出一种基于去噪与改进的ResNet网络调制识别方法。运用变分模态分解与小波相结合的去噪方法,保留了低相关... 针对复杂的水声环境噪声干扰导致提取信号特征不明显、水声通信调制信号类内差异大、类间相似导致调制识别准确率低的问题,本文提出一种基于去噪与改进的ResNet网络调制识别方法。运用变分模态分解与小波相结合的去噪方法,保留了低相关性模态分量含有的有效信息;运用双线性ResNet18使网络具备捕获区分性强的局部信息;引入坐标注意力机制,使网络不仅能关注通道信息也能关注图像的空间信息。仿真结果表明:本文降噪方法相关系数更高、均方根误差均降低了20%;以0 dB条件为例,本文改进网络准确率相比于ResNet提升了8%,7种调制信号都达到了95%以上,调相调制准确率也达到了90%。 展开更多
关键词 水声通信 调制识别 残差网络 去噪 双线性模型 注意力机制 神经网络 变分模态
在线阅读 下载PDF
基于多尺度深度可分离ResNet的废弃家电回收图像分类模型
15
作者 雷帅 仇明鑫 +1 位作者 柳先辉 张颖瑶 《计算机科学》 北大核心 2025年第S1期377-383,共7页
针对海量废弃家电回收图像数据在回收技术中难以有效利用的问题,提出了一种基于ResNet和多尺度卷积的废弃家电回收图像分类模型(Multi-scale and Efficient ResNet,ME-ResNet)。首先,基于残差结构设计了多尺度卷积模块以提升不同尺度特... 针对海量废弃家电回收图像数据在回收技术中难以有效利用的问题,提出了一种基于ResNet和多尺度卷积的废弃家电回收图像分类模型(Multi-scale and Efficient ResNet,ME-ResNet)。首先,基于残差结构设计了多尺度卷积模块以提升不同尺度特征信息提取能力,在此基础上基于ResNet设计了针对废弃家电回收图像分类问题的ME-ResNet模型;其次,通过用深度可分离卷积替换多尺度卷积中的部分卷积层,实现ME-ResNet模型轻量化;最后,通过与其他卷积神经网络的对比实验,对ME-ResNet及其轻量化模型的性能进行了验证。研究结果表明:相较于经典的卷积神经网络ResNet34,ME-ResNet及其轻量化模型均能有效提升识别准确度,针对构建的数据集,其最优准确率分别提升了1.2%和0.3%,宏精确率分别提升了1.7%和0.9%,宏召回率分别提升了1.3%和0.2%,宏F1分数分别提升了1.5%和0.5%。 展开更多
关键词 多尺度卷积 ME-resnet模型 深度可分离卷积 图像分类 残差连接
在线阅读 下载PDF
基于改进的ResNet网络和特征融合的目标跟踪算法
16
作者 孟伟君 孙思维 马素刚 《现代电子技术》 北大核心 2025年第13期105-112,共8页
为了增强利用残差网络提取的目标特征,在ATOM50算法基础上提出了一种基于改进的ResNet网络和特征融合的目标跟踪算法。在ResNet-50骨干网络中使用结合无批处理归一化和位置感知循环卷积的增强瓶颈块,有效增强了全局信息的捕获能力,并减... 为了增强利用残差网络提取的目标特征,在ATOM50算法基础上提出了一种基于改进的ResNet网络和特征融合的目标跟踪算法。在ResNet-50骨干网络中使用结合无批处理归一化和位置感知循环卷积的增强瓶颈块,有效增强了全局信息的捕获能力,并减缓了跟踪过程中的偏移累积;对提取的特征采用注意力特征融合模块,通过融合浅层特征的细节和深层特征的语义信息,进一步增强特征对目标的表达能力。利用OTB2015、VOT2018和LaSOT数据集对所提算法进行验证,在OTB2015上成功率和精确度分别达到了70.2%和91.1%,与基准算法ATOM50相比,成功率和精确度分别提升了1.2%和1.5%;在VOT2018数据集上,期望平均重叠率提升了4.4%;在LaSOT数据集上,成功率和精确度分别提升了2.4%和2.9%;在OTB2015数据集上的平均跟踪速度达到34.3 f/s,确保了实时跟踪。 展开更多
关键词 深度学习 视觉跟踪 Siamese网络 批量归一化 注意力机制 改进resnet网络
在线阅读 下载PDF
基于ECA-MSCB ResNet的不均衡岩性识别
17
作者 裴谋 李波 胡勇 《科学技术与工程》 北大核心 2025年第22期9398-9407,共10页
为了改善由于地质数据类别不均衡导致的岩性预测精度不高的问题,提出了一种ECA-MSCB ResNet模型,集成高效通道注意力机制(efficient channel attention,ECA)和多尺度卷积块(multi-scale convolutional block,MSCB)于传统的ResNet架构中... 为了改善由于地质数据类别不均衡导致的岩性预测精度不高的问题,提出了一种ECA-MSCB ResNet模型,集成高效通道注意力机制(efficient channel attention,ECA)和多尺度卷积块(multi-scale convolutional block,MSCB)于传统的ResNet架构中,实现了对岩性数据特征的高效提取和表征。针对岩性类别不均衡的问题,在模型训练过程中引入先验概率平衡logit偏差,改进焦点损失函数,以提升对少数类岩性的识别能力。实验结果表明,基于ECA-MSCB ResNet的模型在地质岩性不均衡数据集上表现良好,与原ResNet模型相比,平均预测准确率提升约7.45%,与随机森林相比提升27.33%,特别是在少数类岩性的识别上取得了显著进步,平均提高约17.9%。同时,本文模型在公开数据集上表现良好,F_(1)-score达到75.77%。此外,本文模型识别准确率高于目前主流方法,在地质不均衡岩性识别领域具有良好的应用价值。 展开更多
关键词 岩性预测 测井数据 不均衡数据 ECA-MSCB resnet
在线阅读 下载PDF
基于改进3D ResNet18的多模态微表情识别
18
作者 梁岩 黄润才 卢士铖 《计算机应用研究》 北大核心 2025年第3期903-910,共8页
针对微表情识别技术面临的时间特征提取挑战包括短暂性带来的捕捉难题、时空信息融合的难点、数据稀疏性导致的过拟合问题、静态特征提取方法的局限性、数据预处理对识别性能的影响,提出了一种基于改进3D ResNet的多模态微表情识别方法(... 针对微表情识别技术面临的时间特征提取挑战包括短暂性带来的捕捉难题、时空信息融合的难点、数据稀疏性导致的过拟合问题、静态特征提取方法的局限性、数据预处理对识别性能的影响,提出了一种基于改进3D ResNet的多模态微表情识别方法(IM3DR-MFER)。通过在传统3D ResNet中融入了参数精简策略和多尺度上下文感知融合策略改进3D ResNet18,在降低参数的同时提升对面部局部特征及其在广泛上下文中的信息捕捉能力。通过融合面部全局特征与光流动态特征,构建了一个双模态输入框架,从而显著提升了模型在不同维度上的特征表征能力。通过创新性地引入新型三维注意力机制(CASANet),自适应地识别并突出微表情序列中各个时间点的关键特征。经过在CASME II、SAMM以及复合数据集(CD)上的实验验证结果表明,所提方法分别取得了93.2%、88.7%和84.6%的准确率,从而验证了所提方法在人脸微表情识别任务中的有效性和先进性。 展开更多
关键词 微表情识别 3D resnet18 双模态 CASANet
在线阅读 下载PDF
基于模态时频图与Resnet-Bi GRU模型的MMC子模块开路故障诊断 被引量:2
19
作者 刘述喜 刘科 +2 位作者 王乾蕴 曲雨霏 罗钦 《电力系统保护与控制》 北大核心 2025年第2期73-88,共16页
针对电力系统中模块化多电平换流器(modular multilevel converter,MMC)在故障诊断过程中存在提取特征信息易遗漏、诊断精度低和计算量大等问题,提出一种基于模态时频图与残差网络(residual network,Resnet)-双向门控循环单元(bidirecti... 针对电力系统中模块化多电平换流器(modular multilevel converter,MMC)在故障诊断过程中存在提取特征信息易遗漏、诊断精度低和计算量大等问题,提出一种基于模态时频图与残差网络(residual network,Resnet)-双向门控循环单元(bidirectional gated recurrent unit,BiGRU)模型的分立化MMC开路故障诊断方法。根据开路故障特性,合理选择输出相电流和桥臂电压作为故障参量。使用改进灰狼优化算法搜寻自适应噪声完全经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)过程中的最优参数,结合CEEMDAN最优参数将故障参量分解为敏感且优质的固有模态(intrinsic mode function,IMF)分量并进行重构。为充分挖掘重构信号中的敏感成分,利用连续小波变换将重构信号转化为模态时频图;将不同故障类别下的模态时频图输入到Resnet-Bi GRU模型中进行训练、测试并输出诊断结果,完成对故障桥臂的诊断与子模块中故障绝缘栅双极型晶体管(insulated-gate bipolar transistor,IGBT)的定位。实验结果表明:其诊断故障桥臂与定位子模块中故障IGBT的准确率分别达到98.63%和99.87%,诊断精度高;诊断过程拥有秒级响应时间;与其他方法相比,所提方法在小样本、数据不平衡和噪声干扰等极端条件下具有较高准确率,为电力系统故障诊断提供了一种新思路。 展开更多
关键词 模块化多电平换流器 开路故障诊断 模态时频图 resnet-BiGRU模型
在线阅读 下载PDF
基于改进ResNet18的滑动拼图验证码破解方法
20
作者 刘宽 候红涛 +1 位作者 汪威 罗子江 《计算机应用与软件》 北大核心 2025年第9期369-375,共7页
针对新型带伪缺口的滑动拼图验证码程序有效阻止了现有方法的攻击,提出改进ResNet18的滑动拼图验证码破解方法。为保证训练模型具有泛化性,通过数据增强方式获取百万级训练样本并进行图像预处理;随后将预处理图像送入改进的ResNet18进... 针对新型带伪缺口的滑动拼图验证码程序有效阻止了现有方法的攻击,提出改进ResNet18的滑动拼图验证码破解方法。为保证训练模型具有泛化性,通过数据增强方式获取百万级训练样本并进行图像预处理;随后将预处理图像送入改进的ResNet18进行训练和测试获得网络模型,紧接着使用该模型进行滑块检测和缺口检测计算滑块与缺口之间的距离,并使用随机曲线拟合算法生成滑动轨迹;利用Selenium拖动滑块完成拼图验证。经实验表明改进ResNet18相较于传统的ResNet18参数量减少41%、GFLOPs(Giga Floating-point Operations Per Second)减少59%,在检测精度提高1.8百分点的情况下推理速度快了2.75倍,还能有效破解新型和普通滑动拼图验证码程序,其中mAP(Mean Average Precision)达到98.66%,mAS(Mean Average Speed)为3.68 s,具有较强的普适性且整体性能优于现有方法。 展开更多
关键词 滑动拼图 验证码破解 改进的resnet18 随机曲线拟合算法
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部