期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
融合ResNeSt和多尺度特征融合的遥感影像道路提取 被引量:3
1
作者 郝明 白鹤 徐婷婷 《光电工程》 北大核心 2025年第1期39-51,共13页
针对高分辨率遥感影像的道路提取存在道路边缘分割不连续、小目标道路分割精度不高和目标道路误分的问题,本文提出了结合ResNeSt和多尺度特征融合的遥感影像道路提取方法用于遥感影像道路提取(ResT-UNet)。参考ResNeSt网络模块构造U型... 针对高分辨率遥感影像的道路提取存在道路边缘分割不连续、小目标道路分割精度不高和目标道路误分的问题,本文提出了结合ResNeSt和多尺度特征融合的遥感影像道路提取方法用于遥感影像道路提取(ResT-UNet)。参考ResNeSt网络模块构造U型网编码器,使前期编码器可以更完整的提取信息,分割目标边缘更加连续;首先在编码器部分引入Triplet Attention注意力机制,抑制无用的特征信息;其次使用卷积块代替最大池化操作,增加特征维度和网络深度,减少道路信息丢失;最后在编码器网络和解码器网络的桥连接部分使用多尺度特征融合模块(multi-acale feature fusion,MSFF),以捕获区域间的远程依赖关系,提高道路的分割效果。实验在Massachusetts道路数据集和DeepGlobe数据集上进行实验,实验结果表明,该方法分别在数据集上IoU达到了64.76%和64.45%,相比于近几年网络MINet模型提高了1.42%和1.74%,表明ResT-UNet网络有效提高遥感影像道路的提取精度,为解译遥感图像语义信息提供一种新思路。 展开更多
关键词 遥感影像 道路提取 resnest网络 多尺度特征融合 注意力机制
在线阅读 下载PDF
基于ResNeSt网络的糖网病及糖尿病黄斑水肿联合分级
2
作者 张爱玲 杨林英 闫士举 《应用科学学报》 北大核心 2025年第5期849-862,共14页
糖网病(diabetic retinopathy, DR)和糖尿病黄斑水肿(diabetic macular edema,DME)是造成人类失明的主要原因。本文基于ResNeSt网络关注DR和DME之间的密切关联以实现两者的联合分级,从而提高分级精度。使用ResNeSt网络的不同层级分别提... 糖网病(diabetic retinopathy, DR)和糖尿病黄斑水肿(diabetic macular edema,DME)是造成人类失明的主要原因。本文基于ResNeSt网络关注DR和DME之间的密切关联以实现两者的联合分级,从而提高分级精度。使用ResNeSt网络的不同层级分别提取DR和DME的共有特征及两者的特有特征,在此基础上利用互关注模块进行特征融合,实现两者的各自分级。在Messidor数据集上,同时使用ResNeSt网络和互关注模块时DR和DME的分级准确率分别为95.6%和95.0%,联合准确率为86.7%;而仅使用ResNeSt网络时两者的分级准确率分别为95.0%和90.8%。在IDRiD数据集上两者的联合准确率为66.3%。数据集的研究结果表明,基于ResNeSt网络对DR和DME进行联合分级可以提高分级精度。 展开更多
关键词 糖网病:黄斑水肿 resnest 注意力机制 联合分级
在线阅读 下载PDF
基于空间注意力增强ResNeSt-101网络和迁移元学习的小样本害虫分类 被引量:5
3
作者 梁炜健 郭庆文 +2 位作者 王春桃 肖德琴 黄琼 《农业工程学报》 EI CAS CSCD 北大核心 2024年第6期285-297,共13页
害虫识别是害虫防治的关键基础,由于较难获得足够的害虫种类图像,如何使用少量标记图像构造害虫分类器是一个富有挑战性的问题。现有研究多采用匹配网络框架来解决这个问题,该框架使用元学习避免重新训练深度网络,然而主干网络的特征提... 害虫识别是害虫防治的关键基础,由于较难获得足够的害虫种类图像,如何使用少量标记图像构造害虫分类器是一个富有挑战性的问题。现有研究多采用匹配网络框架来解决这个问题,该框架使用元学习避免重新训练深度网络,然而主干网络的特征提取能力有限,元学习算法没有提供较好的权重初始化策略,可能导致网络出现梯度消失或者梯度爆炸的情况。为了解决这一问题,该研究提出一种基于空间注意力增强ResNeSt-101和迁移元学习算法的小样本害虫分类器。首先,通过一个空间注意力模块增强ResNeSt-101以更好地提取害虫图像特征,即在ResNeSt-101的第1阶段的最大池化层之前以及在第2~4阶段的末尾分别附加集成空间注意力模块,并通过数值仿真确定空间注意力增强模块的最佳放置位置为第1阶段的最大池化层之前。随后,通过迁移学习策略初始化网络权重,进而通过元学习进行优化。为了避免网络出现梯度消失或者梯度爆炸的情况,在元学习算法中选择归一化的温度缩放交叉熵损失函数代替三元组损失函数。最后,通过计算查询图像和支持图像深度特征之间的相似度实现害虫分类。所提出方法在自建的害虫图像数据集AD0和MIP50上使用N-类K-例准确率和每张图像处理时间(the time of per image processing,TPIP)进行评估。害虫图像数据集的构建方式如下:首先对公共害虫图像数据集IP102和D0进行清洗,以消除由于英文害虫名称导致的歧义类别;然后移除卵、幼虫和蛹阶段的害虫图像,仅保留成虫阶段的图像。考虑到人工和时间成本,从清理后的IP102害虫数据集中选择50个类别构建MIP50害虫图像数据集。随后,通过害虫的拉丁名称从互联网搜索更多的害虫图像,生成AD0害虫图像数据集。自建的MIP50数据集包括来自IP102的50个类别的16424张成虫图像,AD0包含来自D0的所有40个类别的17112张成虫图像。试验结果表明,当测试集中只有少数未知类别的害虫图像时,本文方法在AD0数据集上的5-类10-例评估准确率达到了96.37%,在MIP50数据集上达到了76.91%。当测试集中同时存在几个未知和已知类别的害虫图像时,所提方法在AD0数据集上的5-类10-例设置下的识别准确率达到了93.73%,在MIP50数据集上达到90.60%。同时,本文方法的TPIP大约为0.44 ms,满足大多数场景下的实时害虫识别要求。此外,消融试验结果表明,基于空间注意力增强ResNeSt-101网络和迁移元学习的小样本害虫分类方法在AD0、MIP50数据集上对未知类别害虫图像的5-类10-例的识别准确率分别提升了5和3个百分点以上,具有良好应用前景。但未来研究中还需进一步研究本方法中存在的问题,如通过采用更好地表征支持集样本与查询集样本之间复杂关系的度量优化本工作中用到的度量以解决增加类别数可能导致分类准确率降低的问题,以及将所提方法应用于现实农业场景进行优化改进以更好提升本文方法的实用性。 展开更多
关键词 病虫害 图像处理 小样本分类 元学习 resnest-101 交叉熵损失
在线阅读 下载PDF
基于ResNeSt网络的音频欺骗检测 被引量:1
4
作者 何信 胡金瑶 +1 位作者 艾斯卡尔·艾木都拉 米吉提·阿不里米提 《现代电子技术》 2022年第23期88-92,共5页
目前最先进的语音合成和语音转换模型能够生成人耳无法区分的虚假语音,这对自动说话人验证(ASV)系统的安全构成巨大威胁。近年来,越来越多抗欺骗对策用于提高ASV系统的可靠性。然而,在实际使用中,在检测未知攻击时遇到困难,特别是,合成... 目前最先进的语音合成和语音转换模型能够生成人耳无法区分的虚假语音,这对自动说话人验证(ASV)系统的安全构成巨大威胁。近年来,越来越多抗欺骗对策用于提高ASV系统的可靠性。然而,在实际使用中,在检测未知攻击时遇到困难,特别是,合成语音欺骗算法的快速发展正在产生越来越强大的未知攻击。在这项工作中,由于ResNeSt网络模型在图像分类和检测任务中取得较好的成绩,因此构建了残差卷积神经网络的变体ResNeSt,使用时域二维特征转换、频域特征等各种特征提取方法(MFCC、LFCC、CQCC)来检测未知的合成语音欺骗攻击。实验结果表明,ResNeSt系统在ASV的逻辑评估集上达到了6.04%的等错误率(EER),相比ASVspoof2019的基线模型提高了25%的性能。 展开更多
关键词 自动说话人验证 resnest模型 语音合成 语音转换 倒谱系数 EER 神经网络
在线阅读 下载PDF
改进ResNeSt网络的拓片甲骨文字识别 被引量:7
5
作者 毛亚菲 毕晓君 《智能系统学报》 CSCD 北大核心 2023年第3期450-458,共9页
目前,拓片甲骨文字的识别方法存在局部细节特征提取能力弱,对部分高相似度的甲骨文字识别率较低的问题。为此,本文提出了一种基于改进ResNeSt网络的甲骨文字识别方法,通过设计跳转连接结构,逐步将网络浅层特征向网络深层传递并进行融合... 目前,拓片甲骨文字的识别方法存在局部细节特征提取能力弱,对部分高相似度的甲骨文字识别率较低的问题。为此,本文提出了一种基于改进ResNeSt网络的甲骨文字识别方法,通过设计跳转连接结构,逐步将网络浅层特征向网络深层传递并进行融合;同时结合甲骨文字“长条形”的特点,引入坐标注意力机制模块,从宽度和高度两个方向上对所得特征进行加权融合;最后通过去掉网络最后一层的激活函数和全连接层以及对最后一个卷积层输出通道数的重新设置,对网络分类器进行了有效优化。实验结果表明,本文提出的改进拓片甲骨文字识别模型在OBC306数据集上识别准确率达到93.53%,取得了目前最好的识别效果。 展开更多
关键词 resnest网络模型 甲骨文字识别 跳转连接 坐标注意力机制 分类器优化 OBC306 深度学习 神经网络
在线阅读 下载PDF
改进Faster R-CNN的输电线路山火图像检测方法
6
作者 黄力 吴珈承 《现代电子技术》 北大核心 2025年第9期173-179,共7页
针对山火严重威胁输电线路安全的问题,提出一种改进Faster R-CNN的输电线路山火图像检测方法。选用ResNeSt50作为主干网络以提升模型性能,同时在主干网络后面加入递归特征金字塔(RFP)以增强模型在多尺度上的特征提取能力。采用CIoU Los... 针对山火严重威胁输电线路安全的问题,提出一种改进Faster R-CNN的输电线路山火图像检测方法。选用ResNeSt50作为主干网络以提升模型性能,同时在主干网络后面加入递归特征金字塔(RFP)以增强模型在多尺度上的特征提取能力。采用CIoU Loss回归损失函数以提高边界框回归速率和定位精度,使用Focal Loss分类损失函数以提高对小目标的烟雾和火焰检测精度。运用Kmeans++聚类算法对烟雾和火焰数据进行anchor尺寸优化,以提高算法的检测准确率。利用数据增强技术来解决图像数量不足和天气环境变化影响检测精度的问题。经过训练和测试,结果显示改进后的Faster RCNN方法在平均精度均值上达到了95.54%,比原模型提高了7.39%,能够有效识别输电线路附近产生的烟雾和火焰,满足山火检测准确性和实时性的要求。 展开更多
关键词 深度学习 山火检测 烟雾检测 Kmeans++ resnest50 CIoU Loss Focal Loss RFP
在线阅读 下载PDF
基于多尺度特征融合的绝缘子缺陷程度检测 被引量:5
7
作者 陈奎 贾立娇 +2 位作者 刘晓 方永丽 赵昌新 《高电压技术》 EI CAS CSCD 北大核心 2024年第5期1889-1899,I0008,共12页
针对绝缘子不同程度缺陷特征相似、像素信息少、不同程度缺陷检测效果不佳的问题,提出了一种基于多尺度特征融合的绝缘子缺陷程度检测网络(multi-scale feature fusion defect degree detection network,MFFD3Net)。该网络采用重构的Res... 针对绝缘子不同程度缺陷特征相似、像素信息少、不同程度缺陷检测效果不佳的问题,提出了一种基于多尺度特征融合的绝缘子缺陷程度检测网络(multi-scale feature fusion defect degree detection network,MFFD3Net)。该网络采用重构的ResNeSt50架构提高了对绝缘子缺陷程度数据集的特征提取能力。设计了基于反卷积的多尺度特征融合模块,丰富了不同尺寸特征图的表达能力,提高了对不同尺度目标的检测性能。同时,在输入检测模块的浅层特征图后增加多感受野的特征提取模块(receptive field block,RFB),使得更多绝缘子缺陷信息进入有效感受野,对最终特征图产生影响,提升不同程度绝缘子缺陷的检测精度。MFFD3Net在绝缘子缺陷程度数据集上的全类平均精度达到85.02%,其中绝缘子轻微破损与绝缘子轻微闪络小目标的检测精度分别为78.37%、79.98%,能够完成不同程度绝缘子缺陷的识别与定位。因此,该文提出的MFFD3Net对于完善电力系统故障预警、保障电网安全稳定运行具有重要意义。 展开更多
关键词 绝缘子 缺陷程度检测 resnest50 特征提取模块 感受野
在线阅读 下载PDF
基于改进的Cascade RCNN铸管字符检测算法 被引量:1
8
作者 王宇 徐福丽 +5 位作者 王怀震 崔勇 姜岩 陶晔 王译笙 张琦 《计算机集成制造系统》 EI CSCD 北大核心 2024年第11期3954-3966,共13页
由于工业现场采集的铸管字符图像存在背景模糊、字符区域占比小、刻字位置不固定、油漆遮挡等问题,导致现有模型的检测精度难以满足工业现场的需求。针对上述问题,提出改进的Cascade RCNN铸管字符检测算法。首先对特征金字塔进行改进,... 由于工业现场采集的铸管字符图像存在背景模糊、字符区域占比小、刻字位置不固定、油漆遮挡等问题,导致现有模型的检测精度难以满足工业现场的需求。针对上述问题,提出改进的Cascade RCNN铸管字符检测算法。首先对特征金字塔进行改进,提出融合小目标增强的特征金字塔(STE-FPN),利用多尺度特征融合的特征增强能力丰富铸管小目标字符的特征信息。其次引入自矫正/池化的ResNeSt(SCP-ResNeSt)作为特征提取网络,利用自矫正卷积和池化操作以提升背景复杂的铸管字符特征提取效率。最后对级联结构进行改进,引进Mask分支结构,可以自适应地检测字符区域并去除干扰区域,优化了检测结果。将改进后的算法在铸管数据集上进行测试,其平均检测精度mAP为99.1%,比原Cascade RCNN算法提高了2.3%,得到的精度表明改进后的性能优于原算法。 展开更多
关键词 铸管字符检测 背景模糊 Cascade RCNN resnest
在线阅读 下载PDF
基于实例分割技术的草莓叶龄及冠幅表型快速提取方法 被引量:2
9
作者 樊江川 王源桥 +3 位作者 苟文博 蔡双泽 郭新宇 赵春江 《智慧农业(中英文)》 CSCD 2024年第2期95-106,共12页
[目的/意义]为解决高通量草莓叶龄及冠幅提取问题,提出一种基于移动式表型平台和实例分割技术的高通量表型提取方法。[方法]利用小型移动式表型平台对温室内盆栽草莓植株的俯拍图像进行数据获取,并利用改进型Mask R-CNN(Convolutional N... [目的/意义]为解决高通量草莓叶龄及冠幅提取问题,提出一种基于移动式表型平台和实例分割技术的高通量表型提取方法。[方法]利用小型移动式表型平台对温室内盆栽草莓植株的俯拍图像进行数据获取,并利用改进型Mask R-CNN(Convolutional Neural Network)模型对图像进行处理,以此获取草莓植株叶龄信息。首先利用带有分组注意力模块的Split-Attention Networks(ResNeSt)骨干网络替换原有网络,从而提高图像特征信息提取精度和执行效率。在训练时,利用Mosaic方法对草莓图像进行数据增强,并且使用二元交叉熵损失函数对原本的交叉熵分类损失函数进行优化,以达到更好的植株与叶片的检测准确度。在此基础上,对训练结果进行后处理,利用标定比值对冠幅进行计算。[结果和讨论]该方法能够在ResNeSt-101骨干网络下,实现80.1%的掩膜准确率和89.6%的检测框准确率,并且能够以99.3%的植株检测正确率和98.0%的叶片数量检出率实现高通量的草莓叶龄估算工作。而模型推理后草莓植株南北和东西向冠幅测试值与真实值相比误差均低于5%的约占98.1%。[结论]该方法有着较高的鲁棒性,能够为智慧农业下高通量植物表型获取与解析工作提供技术支持。 展开更多
关键词 移动式表型平台 实例分割 草莓表型 叶龄统计 冠幅 Mask R-CNN resnest
在线阅读 下载PDF
基于改进Faster R-CNN的苹果叶部病害识别方法 被引量:28
10
作者 王云露 吴杰芳 +3 位作者 兰鹏 李凤迪 葛成恺 孙丰刚 《林业工程学报》 CSCD 北大核心 2022年第1期153-159,共7页
针对苹果叶片图像中小尺度病斑和复杂背景带来的病斑目标难以精确定位和识别的问题,以苹果的斑点落叶病、黑星病、灰斑病、雪松锈病和花叶病为研究对象,提出一种基于改进Faster R-CNN的苹果叶片病害识别方法。先通过数据增广操作对训练... 针对苹果叶片图像中小尺度病斑和复杂背景带来的病斑目标难以精确定位和识别的问题,以苹果的斑点落叶病、黑星病、灰斑病、雪松锈病和花叶病为研究对象,提出一种基于改进Faster R-CNN的苹果叶片病害识别方法。先通过数据增广操作对训练集数据进行扩充以增强模型鲁棒性,再通过对增广训练集图像进行训练来得到一个可靠的病害识别模型。改进后的模型使用拆分注意力网络(ResNest)作为骨干特征提取网络,使模型更加关注对提升病斑检测性能有用的信息,以增强模型对特征的提取能力;通过添加特征金字塔网络(FPN)进行多尺度特征融合,以增强特征信息的鲁棒性,提高模型的泛化能力;采用级联机制对建议框生成机制进行优化,使检测框定位更加准确。改进后的Faster R-CNN模型的平均精度均值(mAP)达到86.2%,与改进前相比,其平均精度提升了8.7%,对单张病害图像的识别准确率达到98.3%,单张图像平均检测时间0.092 s,能有效识别苹果叶片病斑。实验结果表明,改进后的Faster R-CNN模型能准确快速地实现对苹果叶片小目标病斑和复杂背景下病斑的识别,提升模型识别的精准度。该识别方法可在实际场景下使用,无须特意采摘叶片实现对苹果叶片病害的无损测量识别,可为苹果病害的早期干预和治疗提供科学依据。 展开更多
关键词 苹果病害识别 深度学习 Faster R-CNN resnest 多尺度特征融合 级联机制
在线阅读 下载PDF
基于改进YOLOv3的印刷电路板缺陷检测算法 被引量:17
11
作者 卞佰成 陈田 +1 位作者 吴入军 刘军 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第4期735-743,共9页
针对现有基于深度学习的印刷电路板(PCB)缺陷检测算法无法同时满足精度和效率要求的问题,提出基于YOLOv3改进的AT-YOLO算法来检测PCB缺陷.将主干网络替换为ResNeSt50,提高特征提取能力,减少参数量.引入SPP模块,融合不同感受野的特征,丰... 针对现有基于深度学习的印刷电路板(PCB)缺陷检测算法无法同时满足精度和效率要求的问题,提出基于YOLOv3改进的AT-YOLO算法来检测PCB缺陷.将主干网络替换为ResNeSt50,提高特征提取能力,减少参数量.引入SPP模块,融合不同感受野的特征,丰富了特征的表达能力.改进PANet结构替换FPN,插入SE模块提升有效特征图的表达能力,增加1组高分辨率特征图的输入输出,提升对小目标物体的敏感程度,检测尺度由3个增加到4个.使用K-means算法重新聚类生成锚框尺寸,提高了模型的目标检测精度.实验证明,AT-YOLO算法在PCB缺陷检测数据集上的精度均值AP_(0.5)达到98.42%,参数量为3.523×10^(7),平均检测速度为36帧/s,满足精度和效率的要求. 展开更多
关键词 YOLOv3 resnest 缺陷检测 注意力机制 印刷电路板(PCB)
在线阅读 下载PDF
基于多粒度特征分割的车辆重识别算法
12
作者 蓝章礼 王超 +1 位作者 杨晴晴 金豪 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第9期7-15,共9页
针对车辆重识别任务中局部特征提取不充分和潜在显著性局部特征易被掩盖的问题,提出一种基于多粒度特征分割的算法。该算法采用可实现跨通道间信息交互的ResNeSt-50作为骨干网络提取初级特征,并将骨干网络复制成三个独立的分支,对输出... 针对车辆重识别任务中局部特征提取不充分和潜在显著性局部特征易被掩盖的问题,提出一种基于多粒度特征分割的算法。该算法采用可实现跨通道间信息交互的ResNeSt-50作为骨干网络提取初级特征,并将骨干网络复制成三个独立的分支,对输出的特征图分别沿纵向、横向和通道方向进行多粒度分割以提取到区分性局部特征。为进一步增强网络提取判别性特征信息的能力,又在ResNeSt-50的每个split-attention block中嵌入了空间注意力模块。研究结果表明:算法在VeRi-776数据集上的mAP、Rank-1、Rank-5指标分别达到85.92%、97.67%、98.53%;在VehicleID数据集的三个测试集上,Rank-1指标分别达到了88.36%、84.19%、78.89%,优于现有大部分主流算法,研究结果表明该算法具有先进性和有效性。 展开更多
关键词 交通工程 车辆重识别 resnest-50 多粒度特征分割 空间注意力
在线阅读 下载PDF
基于改进DeeplabV3+的遥感图像分割算法 被引量:19
13
作者 黄聪 杨珺 +1 位作者 刘毅 谢鸿慧 《电子测量技术》 北大核心 2022年第21期148-155,共8页
针对高分辨率遥感图像语义分割存在地物边缘分割不连续、小目标分割精度不高的缺陷,本文提出一种基于改进DeeplabV3+的遥感图像分割算法,该算法首先使用分散注意力网络ResNeSt替换DeeplabV3+原始主干网络Xeception,以提取更丰富的深层... 针对高分辨率遥感图像语义分割存在地物边缘分割不连续、小目标分割精度不高的缺陷,本文提出一种基于改进DeeplabV3+的遥感图像分割算法,该算法首先使用分散注意力网络ResNeSt替换DeeplabV3+原始主干网络Xeception,以提取更丰富的深层语义信息,从而提高图像分割精度;其次引入坐标注意力机制(CA),有效获得更精确的分割目标位置信息,使得分割目标边缘更加连续;最后在解码层中采用级联特征融合方法(CFF)提高网络的语义信息表征能力。试验结果表明,该算法在中国南方某城市的高清遥感图像数据集分割任务上mIoU高达97.07%,相比原始DeepLabV3+模型提高了3.39%,能够更好地利用图像语义特征信息,为解译遥感图像语义信息提供一种新的思路。 展开更多
关键词 遥感图像 DeeplabV3+ resnest 注意力机制 特征融合
在线阅读 下载PDF
基于改进SSD的交通标志检测算法 被引量:4
14
作者 赵友章 吕进 《电子测量技术》 北大核心 2023年第7期151-158,共8页
为了解决真实交通场景下交通标志因目标较小而导致检测精度低的问题,提出了一种改进SSD的交通标志检测算法。首先使用更深层次的ResNest网络替换原始SSD算法的主干网络VGG16来增强弱目标特征的强表征能力,然后在SSD的额外添加层使用RFB... 为了解决真实交通场景下交通标志因目标较小而导致检测精度低的问题,提出了一种改进SSD的交通标志检测算法。首先使用更深层次的ResNest网络替换原始SSD算法的主干网络VGG16来增强弱目标特征的强表征能力,然后在SSD的额外添加层使用RFB模块来增加小目标的感受野。其次使用Bi-FPN加权双向特征金字塔网络有效结合深层与浅层的特征信息,改善小目标的检测性能。最后使用K-means++聚类算法调整默认窗口的大小,有效避免因原始默认窗口太大但交通标志较小而无法匹配的问题,以改善检测效率。实验结果表明,本文提出的模型在中国交通标志数据集(CCTSDB)上获得了95.33%的mAP,与原始SSD模型相比,本文所构建的模型能更好的适应自然背景下的交通标志检测。 展开更多
关键词 交通标志检测 SSD resnest K-means++ RFB模块 加权特征融合
在线阅读 下载PDF
基于锐度感知最小化与多色域双级融合的视网膜图片质量分级 被引量:3
15
作者 梁礼明 雷坤 +2 位作者 詹涛 彭仁杰 谭卢敏 《科学技术与工程》 北大核心 2022年第32期14289-14297,共9页
针对视网膜图片质量差异性大,质量分级模型泛化性能不足的问题,提出了一种基于锐度感知最小化的多色域双级融合算法,用于视网膜图片质量的分级预测。首先,采用ResNeSt网络对RGB(red, green, blue)、HSV(色相hue、饱和度saturation、亮度... 针对视网膜图片质量差异性大,质量分级模型泛化性能不足的问题,提出了一种基于锐度感知最小化的多色域双级融合算法,用于视网膜图片质量的分级预测。首先,采用ResNeSt网络对RGB(red, green, blue)、HSV(色相hue、饱和度saturation、亮度value)和LAB(L表示像素的亮度、A表示从红色到绿色的范围、B表示从黄色到蓝色的范围)3种色域空间进行特征提取。其次,使用网络的特征输出与预测输出进行双级融合,丰富视网膜图片的特征表示。然后,使用锐度感知最小化对视网膜图片质量分级模型进行优化,提高质量分级模型的泛化性能。最后,在EyeQ数据集上进行实验仿真,其准确率为87.35%、精确度为85.87%、敏感度为85.07%、F值为85.44%,所提算法能有效区分视网膜图片的质量等级并提高模型的泛化性能。 展开更多
关键词 图片质量分级 锐度感知最小化 resnest网络 多色域空间 双级融合
在线阅读 下载PDF
用于场景分割的改进DeepLabV3+算法 被引量:2
16
作者 桑永龙 韩军 《电光与控制》 CSCD 北大核心 2022年第3期47-52,共6页
为了提升室外场景下语义分割的精度,提出一种改进的DeepLabV3+神经网络分割算法。其主干部分采用分组的ResNest网络,使各类目标训练权重占比不同,以密集连接的方式改进空洞空间卷积金字塔池化(ASPP)模块,在不牺牲特征空间分辨率的同时... 为了提升室外场景下语义分割的精度,提出一种改进的DeepLabV3+神经网络分割算法。其主干部分采用分组的ResNest网络,使各类目标训练权重占比不同,以密集连接的方式改进空洞空间卷积金字塔池化(ASPP)模块,在不牺牲特征空间分辨率的同时扩大感受野,并且提升特征复用效率。解码端融合编码端提取的3种不同尺度的低层语义特征,以恢复在降采样过程中丢失的空间信息。实验结果表明,在CityScape数据集的检测中,该算法不仅提高了目标的分割准确率,而且对全场景理解和细节处理能力均有明显提升。 展开更多
关键词 图像处理 图像分割 语义分割 DeepLabV3+ resnest 密集连接ASPP
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部