现有的领域自适应方法在定义领域间分布距离时,通常仅从领域样本的整体分布上考虑,而未对带类标签的领域样本分布分别进行考虑,从而在一些具有非平衡数据集的应用领域上表现出一定的局限性.对此,在充分考虑源领域样本类信息的基础上,基...现有的领域自适应方法在定义领域间分布距离时,通常仅从领域样本的整体分布上考虑,而未对带类标签的领域样本分布分别进行考虑,从而在一些具有非平衡数据集的应用领域上表现出一定的局限性.对此,在充分考虑源领域样本类信息的基础上,基于结构风险最小化模型,提出了基于类分布的领域自适应支持向量机(Domain adaptation support vector machine based on class distribution,CDASVM),并将其拓展为可处理多源问题的多源领域自适应支持向量机(CDASVM from multiple sources,MSCDASVM),在人造和真实的非平衡数据集上的实验结果表明,所提方法只有优化或可比较的模式分类性能.展开更多
提出了多标记分类和标记相关性的联合学习(JMLLC),在JMLLC中,构建了基于类别标记变量的有向条件依赖网络,这样不仅使得标记分类器之间可以联合学习,从而增强各个标记分类器的学习效果,而且标记分类器和标记相关性可以联合学习,从而使得...提出了多标记分类和标记相关性的联合学习(JMLLC),在JMLLC中,构建了基于类别标记变量的有向条件依赖网络,这样不仅使得标记分类器之间可以联合学习,从而增强各个标记分类器的学习效果,而且标记分类器和标记相关性可以联合学习,从而使得学习得到的标记相关性更为准确.通过采用两种不同的损失函数:logistic回归和最小二乘,分别提出了JMLLC-LR(JMLLC with logistic regression)和JMLLC-LS(JMLLC with least squares),并都拓展到再生核希尔伯特空间中.最后采用交替求解的方法求解JMLLC-LR和JMLLC-LS.在20个基准数据集上基于5种不同的评价准则的实验结果表明,JMLLC优于已提出的多标记学习算法.展开更多
文摘现有的领域自适应方法在定义领域间分布距离时,通常仅从领域样本的整体分布上考虑,而未对带类标签的领域样本分布分别进行考虑,从而在一些具有非平衡数据集的应用领域上表现出一定的局限性.对此,在充分考虑源领域样本类信息的基础上,基于结构风险最小化模型,提出了基于类分布的领域自适应支持向量机(Domain adaptation support vector machine based on class distribution,CDASVM),并将其拓展为可处理多源问题的多源领域自适应支持向量机(CDASVM from multiple sources,MSCDASVM),在人造和真实的非平衡数据集上的实验结果表明,所提方法只有优化或可比较的模式分类性能.
文摘提出了多标记分类和标记相关性的联合学习(JMLLC),在JMLLC中,构建了基于类别标记变量的有向条件依赖网络,这样不仅使得标记分类器之间可以联合学习,从而增强各个标记分类器的学习效果,而且标记分类器和标记相关性可以联合学习,从而使得学习得到的标记相关性更为准确.通过采用两种不同的损失函数:logistic回归和最小二乘,分别提出了JMLLC-LR(JMLLC with logistic regression)和JMLLC-LS(JMLLC with least squares),并都拓展到再生核希尔伯特空间中.最后采用交替求解的方法求解JMLLC-LR和JMLLC-LS.在20个基准数据集上基于5种不同的评价准则的实验结果表明,JMLLC优于已提出的多标记学习算法.