An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy basis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes...An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy basis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes. To attenuate chattering effectively, the discontinuous control term is approximated by an adaptive PI control structure. The bound of the discontinuous control term is assumed to be unknown and estimated by an adaptive mechanism. Based on the Lyapunov stability theory, an adaptive repetitive control law is proposed to guarantee the closed-loop stability and the tracking performance. By means of FBFNs, which avoid the nonlinear parameterization from entering into the adaptive repetitive control, the controller singularity problem is solved. The proposed approach does not require an exact structure of the system dynamics, and the proposed controller is utilized to control a model of permanent-magnet linear synchronous motor subject to significant disturbances and parameter uncertainties. The simulation results demonstrate the effectiveness of the proposed method.展开更多
A discrete observer-based repetitive control(RC) design method for a linear system with uncertainties was presented based on two-dimensional(2D) system theory. Firstly, a 2D discrete model was established to describe ...A discrete observer-based repetitive control(RC) design method for a linear system with uncertainties was presented based on two-dimensional(2D) system theory. Firstly, a 2D discrete model was established to describe both the control behavior within a repetition period and the learning process taking place between periods. Next, by converting the designing problem of repetitive controller into one of the feedback gains of reconstructed variables, the stable condition was obtained through linear matrix inequality(LMI) and also the gain coefficient of repetitive system. Numerical simulation shows an exceptional feasibility of this proposal with remarkable robustness and tracking speed.展开更多
基金supported by the National Natural Science Foundation of China (61203041)the Chinese National Post-doctor Science Foundation (2011M500217)
文摘An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy basis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes. To attenuate chattering effectively, the discontinuous control term is approximated by an adaptive PI control structure. The bound of the discontinuous control term is assumed to be unknown and estimated by an adaptive mechanism. Based on the Lyapunov stability theory, an adaptive repetitive control law is proposed to guarantee the closed-loop stability and the tracking performance. By means of FBFNs, which avoid the nonlinear parameterization from entering into the adaptive repetitive control, the controller singularity problem is solved. The proposed approach does not require an exact structure of the system dynamics, and the proposed controller is utilized to control a model of permanent-magnet linear synchronous motor subject to significant disturbances and parameter uncertainties. The simulation results demonstrate the effectiveness of the proposed method.
基金Project(61104072) supported by the National Natural Science Foundation of China
文摘A discrete observer-based repetitive control(RC) design method for a linear system with uncertainties was presented based on two-dimensional(2D) system theory. Firstly, a 2D discrete model was established to describe both the control behavior within a repetition period and the learning process taking place between periods. Next, by converting the designing problem of repetitive controller into one of the feedback gains of reconstructed variables, the stable condition was obtained through linear matrix inequality(LMI) and also the gain coefficient of repetitive system. Numerical simulation shows an exceptional feasibility of this proposal with remarkable robustness and tracking speed.